3,360 research outputs found

    Sparse cross-products of metadata in scientific simulation management

    Get PDF
    Managing scientific data is by no means a trivial task even in a single site environment with a small number of researchers involved. We discuss some issues concerned with posing well-specified experiments in terms of parameters or instrument settings and the metadata framework that arises from doing so. We are particularly interested in parallel computer simulation experiments, where very large quantities of warehouse-able data are involved. We consider SQL databases and other framework technologies for manipulating experimental data. Our framework manages the the outputs from parallel runs that arise from large cross-products of parameter combinations. Considerable useful experiment planning and analysis can be done with the sparse metadata without fully expanding the parameter cross-products. Extra value can be obtained from simulation output that can subsequently be data-mined. We have particular interests in running large scale Monte-Carlo physics model simulations. Finding ourselves overwhelmed by the problems of managing data and compute ¿resources, we have built a prototype tool using Java and MySQL that addresses these issues. We use this example to discuss type-space management and other fundamental ideas for implementing a laboratory information management system

    SPEIR: Scottish Portals for Education, Information and Research. Final Project Report: Elements and Future Development Requirements of a Common Information Environment for Scotland

    Get PDF
    The SPEIR (Scottish Portals for Education, Information and Research) project was funded by the Scottish Library and Information Council (SLIC). It ran from February 2003 to September 2004, slightly longer than the 18 months originally scheduled and was managed by the Centre for Digital Library Research (CDLR). With SLIC's agreement, community stakeholders were represented in the project by the Confederation of Scottish Mini-Cooperatives (CoSMiC), an organisation whose members include SLIC, the National Library of Scotland (NLS), the Scottish Further Education Unit (SFEU), the Scottish Confederation of University and Research Libraries (SCURL), regional cooperatives such as the Ayrshire Libraries Forum (ALF)1, and representatives from the Museums and Archives communities in Scotland. Aims; A Common Information Environment For Scotland The aims of the project were to: o Conduct basic research into the distributed information infrastructure requirements of the Scottish Cultural Portal pilot and the public library CAIRNS integration proposal; o Develop associated pilot facilities by enhancing existing facilities or developing new ones; o Ensure that both infrastructure proposals and pilot facilities were sufficiently generic to be utilised in support of other portals developed by the Scottish information community; o Ensure the interoperability of infrastructural elements beyond Scotland through adherence to established or developing national and international standards. Since the Scottish information landscape is taken by CoSMiC members to encompass relevant activities in Archives, Libraries, Museums, and related domains, the project was, in essence, concerned with identifying, researching, and developing the elements of an internationally interoperable common information environment for Scotland, and of determining the best path for future progress

    Naming, Migration, and Replication for NFSv4

    Full text link
    In this paper, we discuss a global name space for NFSv4 and mechanisms for transparent migration and replication. By convention, any file or directory name beginning with /nfs on an NFS client is part of this shared global name space. Our system supports file system migration and replication through DNS resolution, provides directory migration and replication using built-in NFSv4 mechanisms, and supports read/write replication with precise consistency guarantees, small performance penalty, and good scaling. We implement these features with small extensions to the published NFSv4 protocol, and demonstrate a practical way to enhance network transparency and administerability of NFSv4 in wide area networks.http://deepblue.lib.umich.edu/bitstream/2027.42/107939/1/citi-tr-06-1.pd

    Understanding and Leveraging Virtualization Technology in Commodity Computing Systems

    Get PDF
    Commodity computing platforms are imperfect, requiring various enhancements for performance and security purposes. In the past decade, virtualization technology has emerged as a promising trend for commodity computing platforms, ushering many opportunities to optimize the allocation of hardware resources. However, many abstractions offered by virtualization not only make enhancements more challenging, but also complicate the proper understanding of virtualized systems. The current understanding and analysis of these abstractions are far from being satisfactory. This dissertation aims to tackle this problem from a holistic view, by systematically studying the system behaviors. The focus of our work lies in performance implication and security vulnerabilities of a virtualized system.;We start with the first abstraction---an intensive memory multiplexing for I/O of Virtual Machines (VMs)---and present a new technique, called Batmem, to effectively reduce the memory multiplexing overhead of VMs and emulated devices by optimizing the operations of the conventional emulated Memory Mapped I/O in hypervisors. Then we analyze another particular abstraction---a nested file system---and attempt to both quantify and understand the crucial aspects of performance in a variety of settings. Our investigation demonstrates that the choice of a file system at both the guest and hypervisor levels has significant impact upon I/O performance.;Finally, leveraging utilities to manage VM disk images, we present a new patch management framework, called Shadow Patching, to achieve effective software updates. This framework allows system administrators to still take the offline patching approach but retain most of the benefits of live patching by using commonly available virtualization techniques. to demonstrate the effectiveness of the approach, we conduct a series of experiments applying a wide variety of software patches. Our results show that our framework incurs only small overhead in running systems, but can significantly reduce maintenance window
    • …
    corecore