18 research outputs found

    Sketched Answer Set Programming

    Full text link
    Answer Set Programming (ASP) is a powerful modeling formalism for combinatorial problems. However, writing ASP models is not trivial. We propose a novel method, called Sketched Answer Set Programming (SkASP), aiming at supporting the user in resolving this issue. The user writes an ASP program while marking uncertain parts open with question marks. In addition, the user provides a number of positive and negative examples of the desired program behaviour. The sketched model is rewritten into another ASP program, which is solved by traditional methods. As a result, the user obtains a functional and reusable ASP program modelling her problem. We evaluate our approach on 21 well known puzzles and combinatorial problems inspired by Karp's 21 NP-complete problems and demonstrate a use-case for a database application based on ASP.Comment: 15 pages, 11 figures; to appear in ICTAI 201

    Data Provenance Inference in Logic Programming: Reducing Effort of Instance-driven Debugging

    Get PDF
    Data provenance allows scientists in different domains validating their models and algorithms to find out anomalies and unexpected behaviors. In previous works, we described on-the-fly interpretation of (Python) scripts to build workflow provenance graph automatically and then infer fine-grained provenance information based on the workflow provenance graph and the availability of data. To broaden the scope of our approach and demonstrate its viability, in this paper we extend it beyond procedural languages, to be used for purely declarative languages such as logic programming under the stable model semantics. For experiments and validation, we use the Answer Set Programming solver oClingo, which makes it possible to formulate and solve stream reasoning problems in a purely declarative fashion. We demonstrate how the benefits of the provenance inference over the explicit provenance still holds in a declarative setting, and we briefly discuss the potential impact for declarative programming, in particular for instance-driven debugging of the model in declarative problem solving

    Explanation Generation for Multi-Modal Multi-Agent Path Finding with Optimal Resource Utilization using Answer Set Programming

    Full text link
    The multi-agent path finding (MAPF) problem is a combinatorial search problem that aims at finding paths for multiple agents (e.g., robots) in an environment (e.g., an autonomous warehouse) such that no two agents collide with each other, and subject to some constraints on the lengths of paths. We consider a general version of MAPF, called mMAPF, that involves multi-modal transportation modes (e.g., due to velocity constraints) and consumption of different types of resources (e.g., batteries). The real-world applications of mMAPF require flexibility (e.g., solving variations of mMAPF) as well as explainability. Our earlier studies on mMAPF have focused on the former challenge of flexibility. In this study, we focus on the latter challenge of explainability, and introduce a method for generating explanations for queries regarding the feasibility and optimality of solutions, the nonexistence of solutions, and the observations about solutions. Our method is based on answer set programming. This paper is under consideration for acceptance in TPLP.Comment: Paper presented at the 36th International Conference on Logic Programming (ICLP 2020), University Of Calabria, Rende (CS), Italy, September 2020, 16 pages, 6 figure
    corecore