3 research outputs found

    Advanced liquid crystal displays with supreme image qualities

    Get PDF
    Several metrics are commonly used to evaluate the performance of display devices. In this dissertation, we analyze three key parameters: fast response time, wide color gamut, and high contrast ratio, which affect the final perceived image quality. Firstly, we investigate how response time affects the motion blur, and then discover the 2-ms rule. With advanced low-viscosity materials, new operation modes, and backlight modulation technique, liquid crystal displays (LCDs) with an unnoticeable image blur can be realized. Its performance is comparable to an impulse-type display, like cathode ray tube (CRT). Next, we propose two novel backlight configurations to improve an LCD\u27s color gamut. One is to use a functional reflective polarizer (FRP), acting as a notch filter to block the unwanted light, and the other is to combine FRP with a patterned half-wave plate to suppress the crosstalk between blue and green/red lights. In experiment, we achieved 97.3% Rec. 2020 in CIE 1976 color space, which is approaching the color gamut of a laser projector. Finally, to enhance an LCD\u27s contrast ratio, we proposed a novel device configuration by adding an in-cell polarizer between LC layer and color filter array. The CR for a vertically-aligned LCD is improved from 5000:1 to 20,000:1, and the CR for a fringe field switching LCD is improved from 2000:1 to over 3000:1. To further enlarge CR to fulfill the high dynamic range requirement, a dual-panel LCD system is proposed and the measured contrast ratio exceeds 1,000,000:1. Overall speaking, such an innovated LCD exhibits supreme image qualities with motion picture response time comparable to CRT, vivid color to laser projector, and contrast ratio to OLED. Along with other outstanding features, like high peak brightness, high resolution density, long lifetime, and low cost, LCD would continue to maintain its dominance in consumer electronics in the foreseeable future

    Advanced Liquid Crystal Materials For Display And Photonic Applications

    Get PDF
    Thin-film-transistor (TFT) liquid crystal display (LCD) has been widely used in smartphones, pads, laptops, computer monitors, and large screen televisions, just to name a few. A great deal of effort has been delved into wide viewing angle, high resolution, low power consumption, and vivid color. However, relatively slow response time and low transmittance remain as technical challenges. To improve response time, several approaches have been developed, such as low viscosity liquid crystals, overdrive and undershoot voltage schemes, thin cell gap with a high birefringence liquid crystal, and elevated temperature operation. The state-of-the-art gray-to-gray response time of a nematic LC device is about 5 ms, which is still not fast enough to suppress the motion picture image blur. On the other hand, the LCD panel\u27s transmittance is determined by the backlight, polarizers, TFT aperture ratio, LC transmittance, and color filters. Recently, a fringe-field-switching mode using a negative dielectric anisotropy (Δε) LC (n-FFS) has been demonstrated, showing high transmittance (98%), single gamma curve, and cell gap insensitivity. It has potential to replace the commonly used p-FFS (FFS using positive Δε LC) for mobile displays. With the urgent need of submillisecond response time for enabling color sequential displays, polymer-stabilized blue phase liquid crystal (PS-BPLC) has become an increasingly important technology trend for information display and photonic applications. BPLCs exhibit several attractive features, such as reasonably wide temperature range, submillisecond gray-to-gray response time, no need for alignment layer, optically isotropic voltage-off state, and large cell gap tolerance. However, some bottlenecks such as high operation voltage, hysteresis, residual birefringence, and slow charging issue due to the large capacitance, remain to be overcome before their widespread applications can be realized. The material system of PS-BPLC, including nematic LC host, chiral dopant, and polymer network, are discussed in detail. Each component plays an essential role affecting the electro-optic properties and the stability of PS-BPLC. In a PS-BPLC system, in order to lower the operation voltage the host LC usually has a very large dielectric anisotropy (Δε \u3e 100), which is one order of magnitude larger than that of a nematic LC. Such a large Δε not only leads to high viscosity but also results in a large capacitance. High viscosity slows down the device fabrication process and increases device response time. On the other hand, large capacitance causes slow charging time to each pixel and limits the frame rate. To reduce viscosity, we discovered that by adding a small amount (~6%) of diluters, the response time of the PS-BPLC is reduced by 2X-3X while keeping the Kerr constant more or less unchanged. Besides, several advanced PS-BPLC materials and devices have been demonstrated. By using a large Δε BPLC, we have successfully reduced the voltage to \u3c10V while maintaining submillisecond response time. Finally we demonstrated an electric fieldindeced monodomain PS-BPLC, which enables video-rate reflective display with vivid colors. The highly selective reflection in polarization makes it promising for photonics application. Besides displays in the visible spectral region, LC materials are also very useful electro-optic media for near infrared and mid-wavelength infrared (MWIR) devices. However, large absorption has impeded the widespread application in the MWIR region. With delicate molecular design strategy, we balanced the absorption and liquid crystal phase stability, and proposed a fluoro-terphenyl compound with low absorption in both MWIR and near IR regions. This compound serves as an important first example for future development of low-loss MWIR liquid crystals, which would further expand the application of LCs for amplitude and/or phase modulation in MWIR region

    Lattice Boltzmann method for Q-tensor nemato-dynamics in liquid crystal display devices.

    Get PDF
    Nematic liquid crystals are fluids whose anisometric molecules show long range orientational order but no positional order. The orientational order gives rise to anisotropic properties that have widely been exploited as the basis for liquid crystal display devices. The Ericksen-Leslie director theory has successfully been used to describe many dynamic properties of liquid crystals however there are situations in which a more complete description may be given in terms of the second rank traceless symmetric Q-tensor. The development of a liquid crystal device solver is described. The solver calculates the flow, director and order parameter fields in three-dimensions through the Q-tensor equations of nemato-dynamics. The solver includes elastic, electric, magnetic, thermotropic, flexoelectric, dielectric and surface anchoring effects. Coupled lattice Boltzmann algorithms are used with anisotropic forcing terms included in order to reproduce the governing equations. A Chapman-Enskog analysis demonstrates that the algorithm recovers the target macroscopic equations.The method is successfully validated against analytical results for the effect of temperature, external electric fields, flow alignment and Miesowicz viscosities. Further validation is given against numerical solutions of a one-dimensional model of a liquid crystal display device proposed by Davidson.The switching behaviour of a Zenithal Bistable Display is then investigated. It is shown how flexoelectric properties of nematics produce bistability within this device. Defect creation and annihilation processes are shown during device switching for which it is necessary to use a method with variable order parameter. An approach to determine the flexoelectric coefficients is discussed. Results are presented for the preliminary characterisation and operation of this display that may enable optimisation for use in the display industry
    corecore