17,920 research outputs found

    Parameters estimation for spatio-temporal maximum entropy distributions: application to neural spike trains

    Get PDF
    We propose a numerical method to learn Maximum Entropy (MaxEnt) distributions with spatio-temporal constraints from experimental spike trains. This is an extension of two papers [10] and [4] who proposed the estimation of parameters where only spatial constraints were taken into account. The extension we propose allows to properly handle memory effects in spike statistics, for large sized neural networks.Comment: 34 pages, 33 figure

    Spatio-temporal spike trains analysis for large scale networks using maximum entropy principle and Monte-Carlo method

    Full text link
    Understanding the dynamics of neural networks is a major challenge in experimental neuroscience. For that purpose, a modelling of the recorded activity that reproduces the main statistics of the data is required. In a first part, we present a review on recent results dealing with spike train statistics analysis using maximum entropy models (MaxEnt). Most of these studies have been focusing on modelling synchronous spike patterns, leaving aside the temporal dynamics of the neural activity. However, the maximum entropy principle can be generalized to the temporal case, leading to Markovian models where memory effects and time correlations in the dynamics are properly taken into account. In a second part, we present a new method based on Monte-Carlo sampling which is suited for the fitting of large-scale spatio-temporal MaxEnt models. The formalism and the tools presented here will be essential to fit MaxEnt spatio-temporal models to large neural ensembles.Comment: 41 pages, 10 figure
    • …
    corecore