167 research outputs found

    A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric

    Get PDF
    We derive a numerical algorithm for evaluating the Riemannian logarithm on the Stiefel manifold with respect to the canonical metric. In contrast to the existing optimization-based approach, we work from a purely matrix-algebraic perspective. Moreover, we prove that the algorithm converges locally and exhibits a linear rate of convergence.Comment: 30 pages, 5 figures, Matlab cod

    Manifold interpolation and model reduction

    Full text link
    One approach to parametric and adaptive model reduction is via the interpolation of orthogonal bases, subspaces or positive definite system matrices. In all these cases, the sampled inputs stem from matrix sets that feature a geometric structure and thus form so-called matrix manifolds. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction (P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, to appear on DE GRUYTER) and reviews the numerical treatment of the most important matrix manifolds that arise in the context of model reduction. Moreover, the principal approaches to data interpolation and Taylor-like extrapolation on matrix manifolds are outlined and complemented by algorithms in pseudo-code.Comment: 37 pages, 4 figures, featured chapter of upcoming "Handbook on Model Order Reduction

    Density of Spherically-Embedded Stiefel and Grassmann Codes

    Full text link
    The density of a code is the fraction of the coding space covered by packing balls centered around the codewords. This paper investigates the density of codes in the complex Stiefel and Grassmann manifolds equipped with the chordal distance. The choice of distance enables the treatment of the manifolds as subspaces of Euclidean hyperspheres. In this geometry, the densest packings are not necessarily equivalent to maximum-minimum-distance codes. Computing a code's density follows from computing: i) the normalized volume of a metric ball and ii) the kissing radius, the radius of the largest balls one can pack around the codewords without overlapping. First, the normalized volume of a metric ball is evaluated by asymptotic approximations. The volume of a small ball can be well-approximated by the volume of a locally-equivalent tangential ball. In order to properly normalize this approximation, the precise volumes of the manifolds induced by their spherical embedding are computed. For larger balls, a hyperspherical cap approximation is used, which is justified by a volume comparison theorem showing that the normalized volume of a ball in the Stiefel or Grassmann manifold is asymptotically equal to the normalized volume of a ball in its embedding sphere as the dimension grows to infinity. Then, bounds on the kissing radius are derived alongside corresponding bounds on the density. Unlike spherical codes or codes in flat spaces, the kissing radius of Grassmann or Stiefel codes cannot be exactly determined from its minimum distance. It is nonetheless possible to derive bounds on density as functions of the minimum distance. Stiefel and Grassmann codes have larger density than their image spherical codes when dimensions tend to infinity. Finally, the bounds on density lead to refinements of the standard Hamming bounds for Stiefel and Grassmann codes.Comment: Two-column version (24 pages, 6 figures, 4 tables). To appear in IEEE Transactions on Information Theor

    The space of essential matrices as a Riemannian quotient manifold

    Full text link
    The essential matrix, which encodes the epipolar constraint between points in two projective views, is a cornerstone of modern computer vision. Previous works have proposed different characterizations of the space of essential matrices as a Riemannian manifold. However, they either do not consider the symmetric role played by the two views, or do not fully take into account the geometric peculiarities of the epipolar constraint. We address these limitations with a characterization as a quotient manifold which can be easily interpreted in terms of camera poses. While our main focus in on theoretical aspects, we include applications to optimization problems in computer vision.This work was supported by grants NSF-IIP-0742304, NSF-OIA-1028009, ARL MAST-CTA W911NF-08-2-0004, and ARL RCTA W911NF-10-2-0016, NSF-DGE-0966142, and NSF-IIS-1317788
    • …
    corecore