14,889 research outputs found

    SciRecSys: A Recommendation System for Scientific Publication by Discovering Keyword Relationships

    Full text link
    In this work, we propose a new approach for discovering various relationships among keywords over the scientific publications based on a Markov Chain model. It is an important problem since keywords are the basic elements for representing abstract objects such as documents, user profiles, topics and many things else. Our model is very effective since it combines four important factors in scientific publications: content, publicity, impact and randomness. Particularly, a recommendation system (called SciRecSys) has been presented to support users to efficiently find out relevant articles

    Web Site Personalization based on Link Analysis and Navigational Patterns

    Get PDF
    The continuous growth in the size and use of the World Wide Web imposes new methods of design and development of on-line information services. The need for predicting the users’ needs in order to improve the usability and user retention of a web site is more than evident and can be addressed by personalizing it. Recommendation algorithms aim at proposing “next” pages to users based on their current visit and the past users’ navigational patterns. In the vast majority of related algorithms, however, only the usage data are used to produce recommendations, disregarding the structural properties of the web graph. Thus important – in terms of PageRank authority score – pages may be underrated. In this work we present UPR, a PageRank-style algorithm which combines usage data and link analysis techniques for assigning probabilities to the web pages based on their importance in the web site’s navigational graph. We propose the application of a localized version of UPR (l-UPR) to personalized navigational sub-graphs for online web page ranking and recommendation. Moreover, we propose a hybrid probabilistic predictive model based on Markov models and link analysis for assigning prior probabilities in a hybrid probabilistic model. We prove, through experimentation, that this approach results in more objective and representative predictions than the ones produced from the pure usage-based approaches

    Optimal Data Collection For Informative Rankings Expose Well-Connected Graphs

    Get PDF
    Given a graph where vertices represent alternatives and arcs represent pairwise comparison data, the statistical ranking problem is to find a potential function, defined on the vertices, such that the gradient of the potential function agrees with the pairwise comparisons. Our goal in this paper is to develop a method for collecting data for which the least squares estimator for the ranking problem has maximal Fisher information. Our approach, based on experimental design, is to view data collection as a bi-level optimization problem where the inner problem is the ranking problem and the outer problem is to identify data which maximizes the informativeness of the ranking. Under certain assumptions, the data collection problem decouples, reducing to a problem of finding multigraphs with large algebraic connectivity. This reduction of the data collection problem to graph-theoretic questions is one of the primary contributions of this work. As an application, we study the Yahoo! Movie user rating dataset and demonstrate that the addition of a small number of well-chosen pairwise comparisons can significantly increase the Fisher informativeness of the ranking. As another application, we study the 2011-12 NCAA football schedule and propose schedules with the same number of games which are significantly more informative. Using spectral clustering methods to identify highly-connected communities within the division, we argue that the NCAA could improve its notoriously poor rankings by simply scheduling more out-of-conference games.Comment: 31 pages, 10 figures, 3 table
    • …
    corecore