4 research outputs found

    Double Targeted Universal Adversarial Perturbations

    Full text link
    Despite their impressive performance, deep neural networks (DNNs) are widely known to be vulnerable to adversarial attacks, which makes it challenging for them to be deployed in security-sensitive applications, such as autonomous driving. Image-dependent perturbations can fool a network for one specific image, while universal adversarial perturbations are capable of fooling a network for samples from all classes without selection. We introduce a double targeted universal adversarial perturbations (DT-UAPs) to bridge the gap between the instance-discriminative image-dependent perturbations and the generic universal perturbations. This universal perturbation attacks one targeted source class to sink class, while having a limited adversarial effect on other non-targeted source classes, for avoiding raising suspicions. Targeting the source and sink class simultaneously, we term it double targeted attack (DTA). This provides an attacker with the freedom to perform precise attacks on a DNN model while raising little suspicion. We show the effectiveness of the proposed DTA algorithm on a wide range of datasets and also demonstrate its potential as a physical attack.Comment: Accepted at ACCV 202

    Adversarial Learning in the Cyber Security Domain

    Full text link
    In recent years, machine learning algorithms, and more specially, deep learning algorithms, have been widely used in many fields, including cyber security. However, machine learning systems are vulnerable to adversarial attacks, and this limits the application of machine learning, especially in non-stationary, adversarial environments, such as the cyber security domain, where actual adversaries (e.g., malware developers) exist. This paper comprehensively summarizes the latest research on adversarial attacks against security solutions that are based on machine learning techniques and presents the risks they pose to cyber security solutions. First, we discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain. Following that, we define a unified taxonomy, where the adversarial attack methods are characterized based on their stage of occurrence, and the attacker's goals and capabilities. Then, we categorize the applications of adversarial attack techniques in the cyber security domain. Finally, we use our taxonomy to shed light on gaps in the cyber security domain that have already been addressed in other adversarial learning domains and discuss their impact on future adversarial learning trends in the cyber security domain

    Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS

    Full text link
    Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This paper is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this paper, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area

    Challenges and Countermeasures for Adversarial Attacks on Deep Reinforcement Learning

    Full text link
    Deep Reinforcement Learning (DRL) has numerous applications in the real world thanks to its outstanding ability in quickly adapting to the surrounding environments. Despite its great advantages, DRL is susceptible to adversarial attacks, which precludes its use in real-life critical systems and applications (e.g., smart grids, traffic controls, and autonomous vehicles) unless its vulnerabilities are addressed and mitigated. Thus, this paper provides a comprehensive survey that discusses emerging attacks in DRL-based systems and the potential countermeasures to defend against these attacks. We first cover some fundamental backgrounds about DRL and present emerging adversarial attacks on machine learning techniques. We then investigate more details of the vulnerabilities that the adversary can exploit to attack DRL along with the state-of-the-art countermeasures to prevent such attacks. Finally, we highlight open issues and research challenges for developing solutions to deal with attacks for DRL-based intelligent systems
    corecore