18 research outputs found

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Machine Learning in Compiler Optimization

    Get PDF
    In the last decade, machine learning based compilation has moved from an an obscure research niche to a mainstream activity. In this article, we describe the relationship between machine learning and compiler optimisation and introduce the main concepts of features, models, training and deployment. We then provide a comprehensive survey and provide a road map for the wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This paper provides both an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its main achievements

    MiCOMP: Mitigating the Compiler Phase-Ordering Problem Using Optimization Sub-Sequences and Machine Learning

    Get PDF
    Recent compilers offer a vast number of multilayered optimizations targeting different code segments of an application. Choosing among these optimizations can significantly impact the performance of the code being optimized. The selection of the right set of compiler optimizations for a particular code segment is a very hard problem, but finding the best ordering of these optimizations adds further complexity. Finding the best ordering represents a long standing problem in compilation research, named the phase-ordering problem. The traditional approach of constructing compiler heuristics to solve this problem simply cannot cope with the enormous complexity of choosing the right ordering of optimizations for every code segment in an application. This article proposes an automatic optimization framework we call MiCOMP, which Mitigates the Compiler Phase-ordering problem. We perform phase ordering of the optimizations in LLVM’s highest optimization level using optimization sub-sequences and machine learning. The idea is to cluster the optimization passes of LLVM’s O3 setting into different clusters to predict the speedup of a complete sequence of all the optimization clusters instead of having to deal with the ordering of more than 60 different individual optimizations. The predictive model uses (1) dynamic features, (2) an encoded version of the compiler sequence, and (3) an exploration heuristic to tackle the problem. Experimental results using the LLVM compiler framework and the Cbench suite show the effectiveness of the proposed clustering and encoding techniques to application-based reordering of passes, while using a number of predictive models. We perform statistical analysis on the results and compare against (1) random iterative compilation, (2) standard optimization levels, and (3) two recent prediction approaches. We show that MiCOMP’s iterative compilation using its sub-sequences can reach an average performance speedup of 1.31 (up to 1.51). Additionally, we demonstrate that MiCOMP’s prediction model outperforms the -O1, -O2, and -O3 optimization levels within using just a few predictions and reduces the prediction error rate down to only 5%. Overall, it achieves 90% of the available speedup by exploring less than 0.001% of the optimization space
    corecore