31 research outputs found

    Motion Deblurring in the Wild

    Full text link
    The task of image deblurring is a very ill-posed problem as both the image and the blur are unknown. Moreover, when pictures are taken in the wild, this task becomes even more challenging due to the blur varying spatially and the occlusions between the object. Due to the complexity of the general image model we propose a novel convolutional network architecture which directly generates the sharp image.This network is built in three stages, and exploits the benefits of pyramid schemes often used in blind deconvolution. One of the main difficulties in training such a network is to design a suitable dataset. While useful data can be obtained by synthetically blurring a collection of images, more realistic data must be collected in the wild. To obtain such data we use a high frame rate video camera and keep one frame as the sharp image and frame average as the corresponding blurred image. We show that this realistic dataset is key in achieving state-of-the-art performance and dealing with occlusions

    Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal

    Get PDF
    In this paper, we address the problem of estimating and removing non-uniform motion blur from a single blurry image. We propose a deep learning approach to predicting the probabilistic distribution of motion blur at the patch level using a convolutional neural network (CNN). We further extend the candidate set of motion kernels predicted by the CNN using carefully designed image rotations. A Markov random field model is then used to infer a dense non-uniform motion blur field enforcing motion smoothness. Finally, motion blur is removed by a non-uniform deblurring model using patch-level image prior. Experimental evaluations show that our approach can effectively estimate and remove complex non-uniform motion blur that is not handled well by previous approaches.Comment: This is a final version accepted by CVPR 201

    Learning Deep CNN Denoiser Prior for Image Restoration

    Full text link
    Model-based optimization methods and discriminative learning methods have been the two dominant strategies for solving various inverse problems in low-level vision. Typically, those two kinds of methods have their respective merits and drawbacks, e.g., model-based optimization methods are flexible for handling different inverse problems but are usually time-consuming with sophisticated priors for the purpose of good performance; in the meanwhile, discriminative learning methods have fast testing speed but their application range is greatly restricted by the specialized task. Recent works have revealed that, with the aid of variable splitting techniques, denoiser prior can be plugged in as a modular part of model-based optimization methods to solve other inverse problems (e.g., deblurring). Such an integration induces considerable advantage when the denoiser is obtained via discriminative learning. However, the study of integration with fast discriminative denoiser prior is still lacking. To this end, this paper aims to train a set of fast and effective CNN (convolutional neural network) denoisers and integrate them into model-based optimization method to solve other inverse problems. Experimental results demonstrate that the learned set of denoisers not only achieve promising Gaussian denoising results but also can be used as prior to deliver good performance for various low-level vision applications.Comment: Accepted to CVPR 2017. Code: https://github.com/cszn/ircn
    corecore