5 research outputs found

    A Low-rank Tensor Regularization Strategy for Hyperspectral Unmixing

    Full text link
    Tensor-based methods have recently emerged as a more natural and effective formulation to address many problems in hyperspectral imaging. In hyperspectral unmixing (HU), low-rank constraints on the abundance maps have been shown to act as a regularization which adequately accounts for the multidimensional structure of the underlying signal. However, imposing a strict low-rank constraint for the abundance maps does not seem to be adequate, as important information that may be required to represent fine scale abundance behavior may be discarded. This paper introduces a new low-rank tensor regularization that adequately captures the low-rank structure underlying the abundance maps without hindering the flexibility of the solution. Simulation results with synthetic and real data show that the the extra flexibility introduced by the proposed regularization significantly improves the unmixing results

    Super-Resolution for Hyperspectral and Multispectral Image Fusion Accounting for Seasonal Spectral Variability

    Full text link
    Image fusion combines data from different heterogeneous sources to obtain more precise information about an underlying scene. Hyperspectral-multispectral (HS-MS) image fusion is currently attracting great interest in remote sensing since it allows the generation of high spatial resolution HS images, circumventing the main limitation of this imaging modality. Existing HS-MS fusion algorithms, however, neglect the spectral variability often existing between images acquired at different time instants. This time difference causes variations in spectral signatures of the underlying constituent materials due to different acquisition and seasonal conditions. This paper introduces a novel HS-MS image fusion strategy that combines an unmixing-based formulation with an explicit parametric model for typical spectral variability between the two images. Simulations with synthetic and real data show that the proposed strategy leads to a significant performance improvement under spectral variability and state-of-the-art performance otherwise
    corecore