3 research outputs found

    A Low-Complexity Framework for Joint User Pairing and Power Control for Cooperative NOMA in 5G and Beyond Cellular Networks

    Full text link
    This paper investigates the performance of cooperative non-orthogonal multiple access (C-NOMA) in a cellular downlink system. The system model consists of a base station (BS) serving multiple users, where users with good channel quality can assist the transmissions between the BS and users with poor channel quality through either half-duplex (HD) or full-duplex (FD) device-to-device (D2D) communications. We formulate and solve a novel optimization problem that jointly determines the optimal D2D user pairing and the optimal power control scheme, where the objective is maximizing the achievable sum rate of the whole system while guaranteeing a certain quality of service (QoS) for all users. The formulated problem is a mixed-integer non-linear program (MINLP) which is generally NPhard. To overcome this issue, we reconstruct the original problem into a bi-level optimization problem that can be decomposed into two sub-problems to be solved independently. The outer problem is a linear assignment problem which can be efficiently handled by the well-known Hungarian method. The inner problem is still a non-convex optimization problem for which finding the optimal solution is challenging. However, we derive the optimal power control policies for both the HD and the FD schemes in closedform expressions, which makes the computational complexity of the inner problems polynomial for every possible pairing configurations. These findings solve ultimately the original MILNP in a timely manner that makes it suitable for real-time and low latency applications. Our simulation results show that the proposed framework outperforms a variety of proposed schemes in the literature and that it can obtain the optimal pairing and power control policies for a network with 100 users in a negligible computational time

    Performance Analysis and Optimization of NOMA with HARQ for Short Packet Communications in Massive IoT

    Full text link
    In this paper, we consider the massive non-orthogonal multiple access (NOMA) with hybrid automatic repeat request (HARQ) for short packet communications. To reduce the latency, each user can perform one re-transmission provided that the previous packet was not decoded successfully. The system performance is evaluated for both coordinated and uncoordinated transmissions. We first develop a Markov model (MM) to analyze the system dynamics and characterize the packet error rate (PER) and throughput of each user in the coordinated scenario. The power levels are then optimized for two scenarios, including the power constrained and reliability constrained scenarios. A simple yet efficient dynamic cell planning is also designed for the uncoordinated scenario. Numerical results show that both coordinated and uncoordinated NOMA-HARQ with a limited number of retransmissions can achieve the desired level of reliability with the guaranteed latency using a proper power control strategy. Results also show that NOMA-HARQ achieves a higher throughput compared to the orthogonal multiple access scheme with HARQ under the same average received power constraint at the base station

    Reconfigurable Intelligent Surface Enabled Full-Duplex/Half-Duplex Cooperative Non-Orthogonal Multiple Access

    Full text link
    This paper investigates the downlink transmission of reconfigurable intelligent surface (RIS)-aided cooperative non-orthogonal-multiple-access (C-NOMA), where both half-duplex (HD) and full-duplex (FD) relaying modes are considered. The system model consists of one base station (BS), two users and one RIS. The goal is to minimize the total transmit power at both the BS and at the user-cooperating relay for each relaying mode by jointly optimizing the power allocation coefficients at the BS, the transmit power coefficient at the relay user, and the passive beamforming at the RIS, subject to power budget constraints, the successive interference cancellation constraint and the minimum required quality-of-service at both cellular users. To address the high-coupled optimization variables, an efficient algorithm is proposed by invoking an alternating optimization approach that decomposes the original problem into a power allocation sub-problem and a passive beamforming sub-problem, which are solved alternately. For the power allocation sub-problem, the optimal closed-form expressions for the power allocation coefficients are derived. Meanwhile, the semi-definite relaxation approach is exploited to tackle the passive beamforming sub-problem. The simulation results validate the accuracy of the derived power control closed-form expressions and demonstrate the gain in the total transmit power brought by integrating the RIS in C-NOMA networks
    corecore