1,882 research outputs found

    Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels

    Get PDF
    The vertical Bell labs layered space-time (V-BLAST) system is a multi-input multioutput (MIMO) system designed to achieve good multiplexing gain. In recent literature, a precoder, which exploits channel information, has been added in the V-BLAST transmitter. This precoder forces each symbol stream to have an identical mean square error (MSE). It can be viewed as an alternative to the bit-loading method. In this paper, this precoded V-BLAST system is extended to the case of frequency-selective MIMO channels. Both the FIR and redundant types of transceivers, which use cyclic-prefixing and zero-padding, are considered. A fast algorithm for computing a cyclic-prefixing-based precoded V-BLAST transceiver is developed. Experiments show that the proposed methods with redundancy have better performance than the SVD-based system with optimal powerloading and bit loading for frequency-selective MIMO channels. The gain comes from the fact that the MSE-equalizing precoder has better bit-error rate performance than the optimal bitloading method

    Subspace-Based Blind Channel Identification for Cyclic Prefix Systems Using Few Received Blocks

    Get PDF
    In this paper, a novel generalization of subspace-based blind channel identification methods in cyclic prefix (CP) systems is proposed. For the generalization, a new system parameter called repetition index is introduced whose value is unity for previously reported special cases. By choosing a repetition index larger than unity, the number of received blocks needed for blind identification is significantly reduced compared to all previously reported methods. This feature makes the method more realistic especially in wireless environments where the channel state is usually fast-varying. Given the number of received blocks available, the minimum value of repetition index is derived. Theoretical limit allows the proposed method to perform blind identification using only three received blocks in absence of noise. In practice, the number of received blocks needed to yield a satisfactory bit-error-rate (BER) performance is usually on the order of half the block size. Simulation results not only demonstrate the capability of the algorithm to perform blind identification using fewer received blocks, but also show that in some cases system performance can be improved by choosing a repetition index larger than needed. Simulation of the proposed method over time-varying channels clearly demonstrates the improvement over previously reported methods

    Pulse Shaping, Localization and the Approximate Eigenstructure of LTV Channels

    Full text link
    In this article we show the relation between the theory of pulse shaping for WSSUS channels and the notion of approximate eigenstructure for time-varying channels. We consider pulse shaping for a general signaling scheme, called Weyl-Heisenberg signaling, which includes OFDM with cyclic prefix and OFDM/OQAM. The pulse design problem in the view of optimal WSSUS--averaged SINR is an interplay between localization and "orthogonality". The localization problem itself can be expressed in terms of eigenvalues of localization operators and is intimately connected to the concept of approximate eigenstructure of LTV channel operators. In fact, on the L_2-level both are equivalent as we will show. The concept of "orthogonality" in turn can be related to notion of tight frames. The right balance between these two sides is still an open problem. However, several statements on achievable values of certain localization measures and fundamental limits on SINR can already be made as will be shown in the paper.Comment: 6 pages, 2 figures, invited pape

    Suboptimal greedy power allocation schemes for discrete bit loading

    Get PDF
    In this paper we consider low cost discrete bit loading based on greedy power allocation (GPA) under the constraints of total transmit power budget, target BER, and maximum permissible QAM modulation order. Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subchannels only. These subsets are created by considering the minimum SNR boundaries of QAM levels for a given target BER. We demonstrate how these schemes can significantly reduce the computational complexity required for power allocation, particularly in the case of a large number of subchannels. Two of the proposed algorithms can achieve near optimal performance including a transfer of residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes, while greatly reducing complexity, perform best in two separate and distinct SNR regions

    Exploiting Multi-Antennas for Opportunistic Spectrum Sharing in Cognitive Radio Networks

    Full text link
    In cognitive radio (CR) networks, there are scenarios where the secondary (lower priority) users intend to communicate with each other by opportunistically utilizing the transmit spectrum originally allocated to the existing primary (higher priority) users. For such a scenario, a secondary user usually has to trade off between two conflicting goals at the same time: one is to maximize its own transmit throughput; and the other is to minimize the amount of interference it produces at each primary receiver. In this paper, we study this fundamental tradeoff from an information-theoretic perspective by characterizing the secondary user's channel capacity under both its own transmit-power constraint as well as a set of interference-power constraints each imposed at one of the primary receivers. In particular, this paper exploits multi-antennas at the secondary transmitter to effectively balance between spatial multiplexing for the secondary transmission and interference avoidance at the primary receivers. Convex optimization techniques are used to design algorithms for the optimal secondary transmit spatial spectrum that achieves the capacity of the secondary transmission. Suboptimal solutions for ease of implementation are also presented and their performances are compared with the optimal solution. Furthermore, algorithms developed for the single-channel transmission are also extended to the case of multi-channel transmission whereby the secondary user is able to achieve opportunistic spectrum sharing via transmit adaptations not only in space, but in time and frequency domains as well.Comment: Extension of IEEE PIMRC 2007. 35 pages, 6 figures. Submitted to IEEE Journal of Special Topics in Signal Processing, special issue on Signal Processing and Networking for Dynamic Spectrum Acces

    Diversity techniques for blind channel equalization in mobile communications

    Get PDF
    A blind algorithm for channel distortion compensation is presented which can be employed in spatial or temporal diversity receivers. The proposed technique can be used in frequency selective and frequency flat fading mobile channels, using burst transmission schemes in the first case and OFDM modulation in the second one. The algorithm is base on a deterministic criteria and is suited for estimation when short sets of data are available.Peer ReviewedPostprint (published version

    Suboptimal greedy power allocation schemes for discrete bit loading

    Get PDF
    In this paper we consider low cost discrete bit loading based on greedy power allocation (GPA) under the constraints of total transmit power budget, target BER, and maximum permissible QAM modulation order. Compared to the standard GPA, which is optimal in terms of maximising the data throughput, three suboptimal schemes are proposed, which perform GPA on subsets of subchannels only. These subsets are created by considering the minimum SNR boundaries of QAM levels for a given target BER. We demonstrate how these schemes can significantly reduce the computational complexity required for power allocation, particularly in the case of a large number of subchannels. Two of the proposed algorithms can achieve near optimal performance including a transfer of residual power between subsets at the expense of a very small extra cost. By simulations, we show that the two near optimal schemes, while greatly reducing complexity, perform best in two separate and distinct SNR regions
    • …
    corecore