2,576 research outputs found

    Understanding Traffic Density from Large-Scale Web Camera Data

    Full text link
    Understanding traffic density from large-scale web camera (webcam) videos is a challenging problem because such videos have low spatial and temporal resolution, high occlusion and large perspective. To deeply understand traffic density, we explore both deep learning based and optimization based methods. To avoid individual vehicle detection and tracking, both methods map the image into vehicle density map, one based on rank constrained regression and the other one based on fully convolution networks (FCN). The regression based method learns different weights for different blocks in the image to increase freedom degrees of weights and embed perspective information. The FCN based method jointly estimates vehicle density map and vehicle count with a residual learning framework to perform end-to-end dense prediction, allowing arbitrary image resolution, and adapting to different vehicle scales and perspectives. We analyze and compare both methods, and get insights from optimization based method to improve deep model. Since existing datasets do not cover all the challenges in our work, we collected and labelled a large-scale traffic video dataset, containing 60 million frames from 212 webcams. Both methods are extensively evaluated and compared on different counting tasks and datasets. FCN based method significantly reduces the mean absolute error from 10.99 to 5.31 on the public dataset TRANCOS compared with the state-of-the-art baseline.Comment: Accepted by CVPR 2017. Preprint version was uploaded on http://welcome.isr.tecnico.ulisboa.pt/publications/understanding-traffic-density-from-large-scale-web-camera-data

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Spatial Mixture-of-Experts

    Full text link
    Many data have an underlying dependence on spatial location; it may be weather on the Earth, a simulation on a mesh, or a registered image. Yet this feature is rarely taken advantage of, and violates common assumptions made by many neural network layers, such as translation equivariance. Further, many works that do incorporate locality fail to capture fine-grained structure. To address this, we introduce the Spatial Mixture-of-Experts (SMoE) layer, a sparsely-gated layer that learns spatial structure in the input domain and routes experts at a fine-grained level to utilize it. We also develop new techniques to train SMoEs, including a self-supervised routing loss and damping expert errors. Finally, we show strong results for SMoEs on numerous tasks, and set new state-of-the-art results for medium-range weather prediction and post-processing ensemble weather forecasts.Comment: 20 pages, 3 figures; NeurIPS 202

    Recurrent Graph Convolutional Networks for Spatiotemporal Prediction of Snow Accumulation Using Airborne Radar

    Full text link
    The accurate prediction and estimation of annual snow accumulation has grown in importance as we deal with the effects of climate change and the increase of global atmospheric temperatures. Airborne radar sensors, such as the Snow Radar, are able to measure accumulation rate patterns at a large-scale and monitor the effects of ongoing climate change on Greenland's precipitation and run-off. The Snow Radar's use of an ultra-wide bandwidth enables a fine vertical resolution that helps in capturing internal ice layers. Given the amount of snow accumulation in previous years using the radar data, in this paper, we propose a machine learning model based on recurrent graph convolutional networks to predict the snow accumulation in recent consecutive years at a certain location. We found that the model performs better and with more consistency than equivalent nongeometric and nontemporal models.Comment: Accepted to IEEE Radar Conference 2023. 6 pages, 4 figures, 2 table

    SageFormer: Series-Aware Graph-Enhanced Transformers for Multivariate Time Series Forecasting

    Full text link
    Multivariate time series forecasting plays a critical role in diverse domains. While recent advancements in deep learning methods, especially Transformers, have shown promise, there remains a gap in addressing the significance of inter-series dependencies. This paper introduces SageFormer, a Series-aware Graph-enhanced Transformer model designed to effectively capture and model dependencies between series using graph structures. SageFormer tackles two key challenges: effectively representing diverse temporal patterns across series and mitigating redundant information among series. Importantly, the proposed series-aware framework seamlessly integrates with existing Transformer-based models, augmenting their ability to model inter-series dependencies. Through extensive experiments on real-world and synthetic datasets, we showcase the superior performance of SageFormer compared to previous state-of-the-art approaches

    SpatialRank: Urban Event Ranking with NDCG Optimization on Spatiotemporal Data

    Full text link
    The problem of urban event ranking aims at predicting the top-k most risky locations of future events such as traffic accidents and crimes. This problem is of fundamental importance to public safety and urban administration especially when limited resources are available. The problem is, however, challenging due to complex and dynamic spatio-temporal correlations between locations, uneven distribution of urban events in space, and the difficulty to correctly rank nearby locations with similar features. Prior works on event forecasting mostly aim at accurately predicting the actual risk score or counts of events for all the locations. Rankings obtained as such usually have low quality due to prediction errors. Learning-to-rank methods directly optimize measures such as Normalized Discounted Cumulative Gain (NDCG), but cannot handle the spatiotemporal autocorrelation existing among locations. In this paper, we bridge the gap by proposing a novel spatial event ranking approach named SpatialRank. SpatialRank features adaptive graph convolution layers that dynamically learn the spatiotemporal dependencies across locations from data. In addition, the model optimizes through surrogates a hybrid NDCG loss with a spatial component to better rank neighboring spatial locations. We design an importance-sampling with a spatial filtering algorithm to effectively evaluate the loss during training. Comprehensive experiments on three real-world datasets demonstrate that SpatialRank can effectively identify the top riskiest locations of crimes and traffic accidents and outperform state-of-art methods in terms of NDCG by up to 12.7%.Comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023
    • …
    corecore