22 research outputs found

    Coordination in Network Security Games: a Monotone Comparative Statics Approach

    Full text link
    Malicious softwares or malwares for short have become a major security threat. While originating in criminal behavior, their impact are also influenced by the decisions of legitimate end users. Getting agents in the Internet, and in networks in general, to invest in and deploy security features and protocols is a challenge, in particular because of economic reasons arising from the presence of network externalities. In this paper, we focus on the question of incentive alignment for agents of a large network towards a better security. We start with an economic model for a single agent, that determines the optimal amount to invest in protection. The model takes into account the vulnerability of the agent to a security breach and the potential loss if a security breach occurs. We derive conditions on the quality of the protection to ensure that the optimal amount spent on security is an increasing function of the agent's vulnerability and potential loss. We also show that for a large class of risks, only a small fraction of the expected loss should be invested. Building on these results, we study a network of interconnected agents subject to epidemic risks. We derive conditions to ensure that the incentives of all agents are aligned towards a better security. When agents are strategic, we show that security investments are always socially inefficient due to the network externalities. Moreover alignment of incentives typically implies a coordination problem, leading to an equilibrium with a very high price of anarchy.Comment: 10 pages, to appear in IEEE JSA

    Individual Security and Network Design with Malicious Nodes

    Full text link
    Networks are beneficial to those being connected but can also be used as carriers of contagious hostile attacks. These attacks are often facilitated by exploiting corrupt network users. To protect against the attacks, users can resort to costly defense. The decentralized nature of such protection is known to be inefficient but the inefficiencies can be mitigated by a careful network design. Is network design still effective when not all users can be trusted? We propose a model of network design and defense with byzantine nodes to address this question. We study the optimal defended networks in the case of centralized defense and, for the case of decentralized defense, we show that the inefficiencies due to decentralization can be fully mitigated, despite the presence of the byzantine nodes.Comment: 19 pages, 3 figure

    Pricing and Investments in Internet Security: A Cyber-Insurance Perspective

    Full text link
    Internet users such as individuals and organizations are subject to different types of epidemic risks such as worms, viruses, spams, and botnets. To reduce the probability of risk, an Internet user generally invests in traditional security mechanisms like anti-virus and anti-spam software, sometimes also known as self-defense mechanisms. However, such software does not completely eliminate risk. Recent works have considered the problem of residual risk elimination by proposing the idea of cyber-insurance. In this regard, an important research problem is the analysis of optimal user self-defense investments and cyber-insurance contracts under the Internet environment. In this paper, we investigate two problems and their relationship: 1) analyzing optimal self-defense investments in the Internet, under optimal cyber-insurance coverage, where optimality is an insurer objective and 2) designing optimal cyber-insurance contracts for Internet users, where a contract is a (premium, coverage) pair
    corecore