16 research outputs found

    Integration of the EPDiff equation by particle methods

    Get PDF
    The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that is well-suited for this class of solutions and for simulating collisions between wavefronts. Discretization by means of the particle method is shown to preserve the basic Hamiltonian, the weak and variational structure of the original problem, and to respect the conservation laws associated with symmetry under the Euclidean group. Numerical results illustrate that the particle method has superior features in both one and two dimensions, and can also be effectively implemented when the initial data of interest lies on a submanifold

    Numerical study of fractional Camassa-Holm equations

    Full text link
    A numerical study of fractional Camassa-Holm equations is presented. Smooth solitary waves are constructed numerically. Their stability is studied as well as the long time behavior of solutions for general localised initial data from the Schwartz class of rapidly decreasing functions. The appearence of dispersive shock waves is explored

    A Computational Study of an Implicit Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations

    Get PDF
    We propose, analyze, and test a fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional diffusion equation. The proposed method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. By choosing the numerical fluxes carefully, we prove that our scheme is unconditionally stable and convergent. Finally, numerical examples are performed to illustrate the effectiveness and the accuracy of the method

    An explicit finite difference scheme for the Camassa-Holm equation

    Full text link
    We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general H1H^1 initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step in terms of the spatial discretization parameter, we prove that the difference scheme converges strongly in H1H^1 towards a dissipative weak solution of Camassa-Holm equation.Comment: 45 pages, 6 figure

    A local discontinuous Galerkin method for the (non)-isothermal Navier-Stokes-Korteweg equations

    Get PDF
    In this article, we develop a local discontinuous Galerkin (LDG) discretization of the (non)-isothermal Navier-Stokes-Korteweg (NSK) equations in conservative form. These equations are used to model the dynamics of a compressible fluid exhibiting liquid-vapour phase transitions. The NSK-equations are closed with a Van der Waals equation of state and contain third order nonlinear derivative terms. These contributions frequently cause standard numerical methods to violate the energy dissipation relation and require additional stabilization terms to prevent numerical instabilities. In order to address these problems we first develop an LDG method for the isothermal NSK equations using discontinuous finite element spaces combined with a time-implicit Runge-Kutta integration method. Next, we extend the LDG discretization to the non-isothermal NSK equations. An important feature of the LDG discretizations presented in this article is that they are relatively simple, robust and do not require special regularization terms. Finally, computational experiments are provided to demonstrate the capabilities, accuracy and stability of the LDG discretizations

    On error estimates for Galerkin finite element methods for the Camassa-Holm equation

    Full text link
    We consider the Camassa-Holm (CH) equation, a nonlinear dispersive wave equation that models one-way propagation of long waves of moderately small amplitude. We discretize in space the periodic initial-value problem for CH (written in its original and in system form), using the standard Galerkin finite element method with smooth splines on a uniform mesh, and prove optimal-order L2L^{2}-error estimates for the semidiscrete approximation. We also consider an initial-boundary-value problem on a finite interval for the system form of CH and analyze the convergence of its standard Galerkin semidiscretization. Using the fourth-order accurate, explicit, "classical" Runge-Kutta scheme for time-stepping, we construct a highly accurate, stable, fully discrete scheme that we employ in numerical experiments to approximate solutions of CH, mainly smooth travelling waves and nonsmooth solitons of the `peakon' type
    corecore