2 research outputs found

    A Linear-time Algorithm for Sparsification of Unweighted Graphs

    Full text link
    Given an undirected graph GG and an error parameter ϵ>0\epsilon > 0, the {\em graph sparsification} problem requires sampling edges in GG and giving the sampled edges appropriate weights to obtain a sparse graph GϵG_{\epsilon} with the following property: the weight of every cut in GϵG_{\epsilon} is within a factor of (1±ϵ)(1\pm \epsilon) of the weight of the corresponding cut in GG. If GG is unweighted, an O(mlogn)O(m\log n)-time algorithm for constructing GϵG_{\epsilon} with O(nlogn/ϵ2)O(n\log n/\epsilon^2) edges in expectation, and an O(m)O(m)-time algorithm for constructing GϵG_{\epsilon} with O(nlog2n/ϵ2)O(n\log^2 n/\epsilon^2) edges in expectation have recently been developed (Hariharan-Panigrahi, 2010). In this paper, we improve these results by giving an O(m)O(m)-time algorithm for constructing GϵG_{\epsilon} with O(nlogn/ϵ2)O(n\log n/\epsilon^2) edges in expectation, for unweighted graphs. Our algorithm is optimal in terms of its time complexity; further, no efficient algorithm is known for constructing a sparser GϵG_{\epsilon}. Our algorithm is Monte-Carlo, i.e. it produces the correct output with high probability, as are all efficient graph sparsification algorithms

    Sparse Sums of Positive Semidefinite Matrices

    Full text link
    Recently there has been much interest in "sparsifying" sums of rank one matrices: modifying the coefficients such that only a few are nonzero, while approximately preserving the matrix that results from the sum. Results of this sort have found applications in many different areas, including sparsifying graphs. In this paper we consider the more general problem of sparsifying sums of positive semidefinite matrices that have arbitrary rank. We give several algorithms for solving this problem. The first algorithm is based on the method of Batson, Spielman and Srivastava (2009). The second algorithm is based on the matrix multiplicative weights update method of Arora and Kale (2007). We also highlight an interesting connection between these two algorithms. Our algorithms have numerous applications. We show how they can be used to construct graph sparsifiers with auxiliary constraints, sparsifiers of hypergraphs, and sparse solutions to semidefinite programs
    corecore