4,324 research outputs found

    Photonic integrated circuit design in a foundry+fabless ecosystem

    Get PDF
    A foundry-based photonic ecosystem is expected to become necessary with increasing demand and adoption of photonics for commercial products. To make foundry-enabled photonics a real success, the photonic circuit design flow should adopt known concepts from analog and mixed signal electronics. Based on the similarities and differences between the existing photonic and the standardized electronics design flow, we project the needs and evolution of the photonic design flow, such as schematic driven design, accurate behavioral models, and yield prediction in the presence of fabrication variability

    Digital Simulations of Memristors Towards Integration with Reconfigurable Computing

    Get PDF
    The end of Moore’s Law has been predicted for decades. Demand for increased parallel computational performance has been increased by improvements in machine learning. This past decade has demonstrated the ever-increasing creativity and effort necessary to extract scaling improvements in CMOS fabrication processes. However, CMOS scaling is nearing its fundamental physical limits. A viable path for increasing performance is to break the von Neumann bottleneck. In-memory computing using emerging memory technologies (e.g. ReRam, STT, MRAM) offers a potential path beyond the end of Moore’s Law. However, there is currently very little support from industry tools for designers wishing to incorporate these devices and novel architectures. The primary issue for those using these tools is the lack of support for mixed-signal design, as HDLs such as Verilog were designed to work only with digital components. This work aims to improve the ability for designers to rapidly prototype their designs using these emerging memory devices, specifically memristors, by extending Verilog to support functional simulation of memristors with the Verilog Procedural Interface (VPI). In this work, demonstrations of the ability for the VPI to simulate memristors with the nonlinear ion-drift model and the behavior of a memristive crossbar array are presented

    Digital Simulations of Memristors Towards Integration with Reconfigurable Computing

    Get PDF
    The end of Moore’s Law has been predicted for decades. Demand for increased parallel computational performance has been increased by improvements in machine learning. This past decade has demonstrated the ever-increasing creativity and effort necessary to extract scaling improvements in CMOS fabrication processes. However, CMOS scaling is nearing its fundamental physical limits. A viable path for increasing performance is to break the von Neumann bottleneck. In-memory computing using emerging memory technologies (e.g. ReRam, STT, MRAM) offers a potential path beyond the end of Moore’s Law. However, there is currently very little support from industry tools for designers wishing to incorporate these devices and novel architectures. The primary issue for those using these tools is the lack of support for mixed-signal design, as HDLs such as Verilog were designed to work only with digital components. This work aims to improve the ability for designers to rapidly prototype their designs using these emerging memory devices, specifically memristors, by extending Verilog to support functional simulation of memristors with the Verilog Procedural Interface (VPI). In this work, demonstrations of the ability for the VPI to simulate memristors with the nonlinear ion-drift model and the behavior of a memristive crossbar array are presented

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    A Reconfigurable Digital-to-Analog Converter with Supply Invariant Linearity

    Get PDF
    A novel reconfigurable digital-to-analog converter (DAC) with supply independent linearity is presented. The process agnostic converter achieves wide supply range operation and re-configurability by being charge based. This converter consists of a 7-bit parallel digital input control core and an analog summing core utilizing charging capacitors with an operational transconductance amplifier in a voltage-follower configuration. This topology is highly configurable to allow for optimization across process voltages, step sizes and low power operation. The specification of the DAC is (1) supply independence (2) low power operation (3) operation up to 200 kHz and (4) conversion control through a DAC enable signal. Supply independence is achieved through the use of a charge-based approach in the analog core utilizing a finite stepping voltage derived from another, much smaller, voltage reference. This voltage reference in turn determines the resolution of the DAC. The DAC will thus create a stair-stepping analog output until digital input is met or the voltage supply is reached. Feedback is utilized when either of these events occurs notifying the DAC to wait until another sample is requested. Low power is achieved by using static CMOS logic and the inclusion of a sleep mode in the analog core which can be used after the desired output is achieved. This design was implemented across two different processes with different power supplies to confirm the architecture

    A VHDL-AMS Modeling Methodology for Top-Down/Bottom-Up Design of RF Systems

    Get PDF
    Indo-ChinaAn agreement between Ho Chi Minh and the French (1946) made Vietnam a free state though fighting between parties erupted into the First Indochina War ending in May 1954.Vietnam. (2013). In Encyclopædia Britannica. Retrieved from http://school.eb.com/eb/article-52744GrayscaleForman Safety Negatives, Box
    corecore