2 research outputs found

    An MILP Approach for Distribution Grid Topology Identification using Inverter Probing

    Full text link
    Although knowing the feeder topology and line impedances is a prerequisite for solving any grid optimization task, utilities oftentimes have limited or outdated information on their electric network assets. Given the rampant integration of smart inverters, we have previously advocated perturbing their power injections to unveil the underlying grid topology using the induced voltage responses. Under an approximate grid model, the perturbed power injections and the collected voltage deviations obey a linear regression setup, where the unknown is the vector of line resistances. Building on this model, topology processing can be performed in two steps. Given a candidate radial topology, the line resistances can be estimated via a least-squares (LS) fit on the probing data. The topology attaining the best fit can be then selected. To avoid evaluating the exponentially many candidate topologies, this two-step approach is uniquely formulated as a mixed-integer linear program (MILP) using the McCormick relaxation. If the recovered topology is not radial, a second, computationally more demanding MILP confines the search only within radial topologies. Numerical tests explain how topology recovery depends on the noise level and probing duration, and demonstrate that the first simpler MILP yields a tree topology in 90% of the cases tested.Comment: Accepted at IEEE PowerTech 201

    Using Neural Networks to Detect Line Outages from PMU Data

    Full text link
    We propose an approach based on neural networks and the AC power flow equations to identify single- and double-line outages in a power grid using the information from phasor measurement unit sensors (PMUs) placed on only a subset of the buses. Rather than inferring the outage from the sensor data by inverting the physical model, our approach uses the AC model to simulate sensor responses to all outages of interest under multiple demand and seasonal conditions, and uses the resulting data to train a neural network classifier to recognize and discriminate between different outage events directly from sensor data. After training, real-time deployment of the classifier requires just a few matrix-vector products and simple vector operations. These operations can be executed much more rapidly than inversion of a model based on AC power flow, which consists of nonlinear equations and possibly integer / binary variables representing line outages, as well as the variables representing voltages and power flows. We are motivated to use neural network by its successful application to such areas as computer vision and natural language processing. Neural networks automatically find nonlinear transformations of the raw data that highlight useful features that make the classification task easier. We describe a principled way to choose sensor locations and show that accurate classification of line outages can be achieved from a restricted set of measurements, even over a wide range of demand profiles
    corecore