6,982 research outputs found

    Fairness-aware Competitive Bidding Influence Maximization in Social Networks

    Full text link
    Competitive Influence Maximization (CIM) has been studied for years due to its wide application in many domains. Most current studies primarily focus on the micro-level optimization by designing policies for one competitor to defeat its opponents. Furthermore, current studies ignore the fact that many influential nodes have their own starting prices, which may lead to inefficient budget allocation. In this paper, we propose a novel Competitive Bidding Influence Maximization (CBIM) problem, where the competitors allocate budgets to bid for the seeds attributed to the platform during multiple bidding rounds. To solve the CBIM problem, we propose a Fairness-aware Multi-agent Competitive Bidding Influence Maximization (FMCBIM) framework. In this framework, we present a Multi-agent Bidding Particle Environment (MBE) to model the competitors' interactions, and design a starting price adjustment mechanism to model the dynamic bidding environment. Moreover, we put forward a novel Multi-agent Competitive Bidding Influence Maximization (MCBIM) algorithm to optimize competitors' bidding policies. Extensive experiments on five datasets show that our work has good efficiency and effectiveness.Comment: IEEE Transactions on Computational Social Systems (TCSS), 2023, early acces

    A Survey on Influence Maximization: From an ML-Based Combinatorial Optimization

    Full text link
    Influence Maximization (IM) is a classical combinatorial optimization problem, which can be widely used in mobile networks, social computing, and recommendation systems. It aims at selecting a small number of users such that maximizing the influence spread across the online social network. Because of its potential commercial and academic value, there are a lot of researchers focusing on studying the IM problem from different perspectives. The main challenge comes from the NP-hardness of the IM problem and \#P-hardness of estimating the influence spread, thus traditional algorithms for overcoming them can be categorized into two classes: heuristic algorithms and approximation algorithms. However, there is no theoretical guarantee for heuristic algorithms, and the theoretical design is close to the limit. Therefore, it is almost impossible to further optimize and improve their performance. With the rapid development of artificial intelligence, the technology based on Machine Learning (ML) has achieved remarkable achievements in many fields. In view of this, in recent years, a number of new methods have emerged to solve combinatorial optimization problems by using ML-based techniques. These methods have the advantages of fast solving speed and strong generalization ability to unknown graphs, which provide a brand-new direction for solving combinatorial optimization problems. Therefore, we abandon the traditional algorithms based on iterative search and review the recent development of ML-based methods, especially Deep Reinforcement Learning, to solve the IM problem and other variants in social networks. We focus on summarizing the relevant background knowledge, basic principles, common methods, and applied research. Finally, the challenges that need to be solved urgently in future IM research are pointed out.Comment: 45 page

    A Multi-Transformation Evolutionary Framework for Influence Maximization in Social Networks

    Full text link
    Influence maximization is a crucial issue for mining the deep information of social networks, which aims to select a seed set from the network to maximize the number of influenced nodes. To evaluate the influence spread of a seed set efficiently, existing studies have proposed transformations with lower computational costs to replace the expensive Monte Carlo simulation process. These alternate transformations, based on network prior knowledge, induce different search behaviors with similar characteristics to various perspectives. Specifically, it is difficult for users to determine a suitable transformation a priori. This article proposes a multi-transformation evolutionary framework for influence maximization (MTEFIM) with convergence guarantees to exploit the potential similarities and unique advantages of alternate transformations and to avoid users manually determining the most suitable one. In MTEFIM, multiple transformations are optimized simultaneously as multiple tasks. Each transformation is assigned an evolutionary solver. Three major components of MTEFIM are conducted via: 1) estimating the potential relationship across transformations based on the degree of overlap across individuals of different populations, 2) transferring individuals across populations adaptively according to the inter-transformation relationship, and 3) selecting the final output seed set containing all the transformation's knowledge. The effectiveness of MTEFIM is validated on both benchmarks and real-world social networks. The experimental results show that MTEFIM can efficiently utilize the potentially transferable knowledge across multiple transformations to achieve highly competitive performance compared to several popular IM-specific methods. The implementation of MTEFIM can be accessed at https://github.com/xiaofangxd/MTEFIM.Comment: This work has been submitted to the IEEE Computational Intelligence Magazine for publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Influence Maximization in Social Networks: A Survey

    Full text link
    Online social networks have become an important platform for people to communicate, share knowledge and disseminate information. Given the widespread usage of social media, individuals' ideas, preferences and behavior are often influenced by their peers or friends in the social networks that they participate in. Since the last decade, influence maximization (IM) problem has been extensively adopted to model the diffusion of innovations and ideas. The purpose of IM is to select a set of k seed nodes who can influence the most individuals in the network. In this survey, we present a systematical study over the researches and future directions with respect to IM problem. We review the information diffusion models and analyze a variety of algorithms for the classic IM algorithms. We propose a taxonomy for potential readers to understand the key techniques and challenges. We also organize the milestone works in time order such that the readers of this survey can experience the research roadmap in this field. Moreover, we also categorize other application-oriented IM studies and correspondingly study each of them. What's more, we list a series of open questions as the future directions for IM-related researches, where a potential reader of this survey can easily observe what should be done next in this field
    • …
    corecore