11 research outputs found

    A Multi-Implicit Neural Representation for Fonts

    Get PDF
    Fonts are ubiquitous across documents and come in a variety of styles. They are either represented in a native vector format or rasterized to produce fixed resolution images. In the first case, the non-standard representation prevents benefiting from latest network architectures for neural representations; while, in the latter case, the rasterized representation, when encoded via networks, results in loss of data fidelity, as font-specific discontinuities like edges and corners are difficult to represent using neural networks. Based on the observation that complex fonts can be represented by a superposition of a set of simpler occupancy functions, we introduce \textit{multi-implicits} to represent fonts as a permutation-invariant set of learned implict functions, without losing features (e.g., edges and corners). However, while multi-implicits locally preserve font features, obtaining supervision in the form of ground truth multi-channel signals is a problem in itself. Instead, we propose how to train such a representation with only local supervision, while the proposed neural architecture directly finds globally consistent multi-implicits for font families. We extensively evaluate the proposed representation for various tasks including reconstruction, interpolation, and synthesis to demonstrate clear advantages with existing alternatives. Additionally, the representation naturally enables glyph completion, wherein a single characteristic font is used to synthesize a whole font family in the target style

    Recognizing Vector Graphics without Rasterization

    Full text link
    In this paper, we consider a different data format for images: vector graphics. In contrast to raster graphics which are widely used in image recognition, vector graphics can be scaled up or down into any resolution without aliasing or information loss, due to the analytic representation of the primitives in the document. Furthermore, vector graphics are able to give extra structural information on how low-level elements group together to form high level shapes or structures. These merits of graphic vectors have not been fully leveraged in existing methods. To explore this data format, we target on the fundamental recognition tasks: object localization and classification. We propose an efficient CNN-free pipeline that does not render the graphic into pixels (i.e. rasterization), and takes textual document of the vector graphics as input, called YOLaT (You Only Look at Text). YOLaT builds multi-graphs to model the structural and spatial information in vector graphics, and a dual-stream graph neural network is proposed to detect objects from the graph. Our experiments show that by directly operating on vector graphics, YOLaT outperforms raster-graphic based object detection baselines in terms of both average precision and efficiency. Code is available at https://github.com/microsoft/YOLaT-VectorGraphicsRecognition

    AI-generated Content for Various Data Modalities: A Survey

    Full text link
    AI-generated content (AIGC) methods aim to produce text, images, videos, 3D assets, and other media using AI algorithms. Due to its wide range of applications and the demonstrated potential of recent works, AIGC developments have been attracting lots of attention recently, and AIGC methods have been developed for various data modalities, such as image, video, text, 3D shape (as voxels, point clouds, meshes, and neural implicit fields), 3D scene, 3D human avatar (body and head), 3D motion, and audio -- each presenting different characteristics and challenges. Furthermore, there have also been many significant developments in cross-modality AIGC methods, where generative methods can receive conditioning input in one modality and produce outputs in another. Examples include going from various modalities to image, video, 3D shape, 3D scene, 3D avatar (body and head), 3D motion (skeleton and avatar), and audio modalities. In this paper, we provide a comprehensive review of AIGC methods across different data modalities, including both single-modality and cross-modality methods, highlighting the various challenges, representative works, and recent technical directions in each setting. We also survey the representative datasets throughout the modalities, and present comparative results for various modalities. Moreover, we also discuss the challenges and potential future research directions
    corecore