6 research outputs found

    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY (ACCEPTED) 1 An Energy-Efficient Uncoordinated Cooperative Scheme with Uncertain Relay Distribution Intensity

    Get PDF
    Abstract-Due to signal fading and user mobility in wireless networks, quality-of-service (QoS) provisioning for wireless services becomes more challenging. As a promising technique, cooperative communications make use of the broadcasting nature of wireless medium to facilitate data transmission, and thereby reduce energy consumption. However, in many studies on wireless cooperative diversity, it is often assumed that the number of relays or the relay distribution intensity is known a priori. In this paper, we relax such assumption and propose an algorithm to estimate the relay intensity for a backoff-based cooperative scheme, where the relays are distributed as a homogeneous Poisson point process (PPP). It is proved that the algorithm can converge to an optimal solution with the minimum estimation error. Based on the estimated relay intensity, we further investigate a distributed energy saving strategy, which selectively turns off some relays to reduce energy consumption while maintaining the required transmission success probability. The performance of the proposed cooperative scheme is analytically evaluated with respect to the collision probability. The numerical and simulation results demonstrate the high accuracy and efficiency of the intensity estimation algorithm and also validate the theoretical analysis. Moreover, the proposed cooperative scheme exhibits significant energy saving and satisfactory transmission performance, which offers a good match to accommodate green communications in wireless networks. Index Terms-Cooperative wireless networks, distributed relaying, intensity estimation, energy efficiency

    A Layered Coalitional Game Framework of Wireless Relay Network

    No full text
    corecore