6,897 research outputs found

    A meta level to LAG for adaptation language re-use

    Get PDF
    Recently, a growing body of research targets authoring of content and adaptation strategies for adaptive systems. The driving force behind it is semantics-based reuse: the same adaptation strategy can be used for various domains, and vice versa. E.g., a Java course can be taught via a strategy differentiating between beginner and advanced users, or between visual versus verbal users. Whilst using an Adaptation Language (LAG) to express reusable adaptation strategies, we noticed, however, that: a) the created strategies have common patterns that, themselves, could be reused; b) templates based on these patterns could reduce the designers' work; c) there is a strong preference towards XML-based processing and interfacing. This has lead us to define a new meta-language for the LAG Adaptation Language, facilitating the extraction of common design patterns. This paper provides more insight into the LAG language, as well as describes this meta-language, and shows how introducing it can overcome some redundancy issues

    Collaborative Authoring of Adaptive Educational Hypermedia by Enriching a Semantic Wiki’s Output

    No full text
    This research is concerned with harnessing collaborative approaches for the authoring of Adaptive Educational Hypermedia (AEH) systems. It involves the enhancement of Semantic Wikis with pedagogy aware features to this end. There are many challenges in understanding how communities of interest can efficiently collaborate for learning content authoring, in introducing pedagogy to the developed knowledge models and in specifying user models for efficient delivery of AEH systems. The contribution of this work will be the development of a model of collaborative authoring which includes domain specification, content elicitation, and definition of pedagogic approach. The proposed model will be implemented in a prototype AEH authoring system that will be tested and evaluated in a formal education context

    Utilising ontology-based modelling for learning content management

    Get PDF
    Learning content management needs to support a variety of open, multi-format Web-based software applications. We propose multidimensional, model-based semantic annotation as a way to support the management of access to and change of learning content. We introduce an information architecture model as the central contribution that supports multi-layered learning content structures. We discuss interactive query access, but also change management for multi-layered learning content management. An ontology-enhanced traceability approach is the solution

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, Kühme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)

    Development of multiple media documents

    Get PDF
    Development of documents in multiple media involves activities in three different fields, the technical, the discoursive and the procedural. The major development problems of artifact complexity, cognitive processes, design basis and working context are located where these fields overlap. Pending the emergence of a unified approach to design, any method must allow for development at the three levels of discourse structure, media disposition and composition, and presentation. Related work concerned with generalised discourse structures, structured documents, production methods for existing multiple media artifacts, and hypertext design offer some partial forms of assistance at different levels. Desirable characteristics of a multimedia design method will include three phases of production, a variety of possible actions with media elements, an underlying discoursive structure, and explicit comparates for review
    corecore