516 research outputs found

    Enumerating Tarski fixed points on lattices of binary relations

    Full text link
    We study the problem of enumerating Tarski fixed points, focusing on the relational lattices of equivalences, quasiorders and binary relations. We present a polynomial space enumeration algorithm for Tarski fixed points on these lattices and other lattices of polynomial height. It achieves polynomial delay when enumerating fixed points of increasing isotone maps on all three lattices, as well as decreasing isotone maps on the lattice of binary relations. In those cases in which the enumeration algorithm does not guarantee polynomial delay on the three relational lattices on the other hand, we prove exponential lower bounds for deciding the existence of three fixed points when the isotone map is given as an oracle, and that it is NP-hard to find three or more Tarski fixed points. More generally, we show that any deterministic or bounded-error randomized algorithm must perform a number of queries asymptotically at least as large as the lattice width to decide the existence of three fixed points when the isotone map is given as an oracle. Finally, we demonstrate that our findings yield a polynomial delay and space algorithm for listing bisimulations and instances of some related models of behavioral or role equivalence

    Compositional bisimulation metric reasoning with Probabilistic Process Calculi

    Full text link
    We study which standard operators of probabilistic process calculi allow for compositional reasoning with respect to bisimulation metric semantics. We argue that uniform continuity (generalizing the earlier proposed property of non-expansiveness) captures the essential nature of compositional reasoning and allows now also to reason compositionally about recursive processes. We characterize the distance between probabilistic processes composed by standard process algebra operators. Combining these results, we demonstrate how compositional reasoning about systems specified by continuous process algebra operators allows for metric assume-guarantee like performance validation

    Observational Equivalence and Full Abstraction in the Symmetric Interaction Combinators

    Full text link
    The symmetric interaction combinators are an equally expressive variant of Lafont's interaction combinators. They are a graph-rewriting model of deterministic computation. We define two notions of observational equivalence for them, analogous to normal form and head normal form equivalence in the lambda-calculus. Then, we prove a full abstraction result for each of the two equivalences. This is obtained by interpreting nets as certain subsets of the Cantor space, called edifices, which play the same role as Boehm trees in the theory of the lambda-calculus

    Behavioral equivalences for AbU: Verifying security and safety in distributed IoT systems

    Get PDF
    Attribute-based memory Updates ([Formula presented]in short) is an interaction mechanism recently introduced for adapting the Event-Condition-Action (ECA) programming paradigm to distributed reactive systems, such as autonomic and smart IoT device ensembles. In this model, an event (e.g., an input from a sensor, or a device state update) can trigger an ECA rule, whose execution can cause the state update of (possibly) many remote devices at once; the latter are selected ā€œon the flyā€ by means of predicates over their state, without the need of a central coordinating entity. However, the combination of different [Formula presented]systems may yield unexpected interactions, e.g., when a new device is added to an existing secure system, potentially hindering the security of the whole ensemble of devices. This can be critical in the IoT, where smart devices are more and more pervasive in our daily life. In this paper, we consider the problem of ensuring security and safety requirements for [Formula presented]systems (and, in turn, for IoT devices). The first are a form of noninterference, as they correspond to avoid forbidden information flows (e.g., information flows violating confidentiality); while the second are a form of non-interaction, as they correspond to avoid unintended executions (e.g., leading to erroneous/unsafe states). In order to formally model these requirements, we introduce suitable behavioral equivalences for [Formula presented]. These equivalences are generalizations of hiding bisimilarity, i.e., a kind of weak bisimilarity where we can compare systems up to actions at different levels of security. Leveraging these behavioral equivalences, we propose (syntactic) sufficient conditions guaranteeing the requirements and, then, effective algorithms for statically verifying such conditions

    Increasing Interdependence of Multivariate Distributions

    Get PDF
    Orderings of interdependence among random variables are useful in many economic contexts, for example, in assessing ex post inequality under uncertainty; in comparing multidimensional inequality; in valuing portfolios of assets or insurance policies; and in assessing systemic risk. We explore five orderings of interdependence for multivariate distributions: greater weak association, the supermodular ordering, the convex-modular ordering, the dispersion ordering, and the concordance ordering. For two dimensions, all five orderings are equivalent, whereas for an arbitrary number of dimensions n > 2, the five orderings are strictly ranked. For the special case of binary random variables, we establish some equivalences among the orderings.dependence ordering; stochastic orders; supermodularity; weak association; concordance JEL Classification Numbers: D63, D81, G11, G22

    Coalgebraic Behavioral Metrics

    Get PDF
    We study different behavioral metrics, such as those arising from both branching and linear-time semantics, in a coalgebraic setting. Given a coalgebra Ī±ā€‰ā£:Xā†’HX\alpha\colon X \to HX for a functor Hā€‰ā£:Setā†’SetH \colon \mathrm{Set}\to \mathrm{Set}, we define a framework for deriving pseudometrics on XX which measure the behavioral distance of states. A crucial step is the lifting of the functor HH on Set\mathrm{Set} to a functor Hā€¾\overline{H} on the category PMet\mathrm{PMet} of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. If HH has a final coalgebra, every lifting Hā€¾\overline{H} yields in a canonical way a behavioral distance which is usually branching-time, i.e., it generalizes bisimilarity. In order to model linear-time metrics (generalizing trace equivalences), we show sufficient conditions for lifting distributive laws and monads. These results enable us to employ the generalized powerset construction
    • ā€¦
    corecore