7,594 research outputs found

    Homomorphic encryption and some black box attacks

    Full text link
    This paper is a compressed summary of some principal definitions and concepts in the approach to the black box algebra being developed by the authors. We suggest that black box algebra could be useful in cryptanalysis of homomorphic encryption schemes, and that homomorphic encryption is an area of research where cryptography and black box algebra may benefit from exchange of ideas

    Algorithms and Hardness for Robust Subspace Recovery

    Full text link
    We consider a fundamental problem in unsupervised learning called \emph{subspace recovery}: given a collection of mm points in Rn\mathbb{R}^n, if many but not necessarily all of these points are contained in a dd-dimensional subspace TT can we find it? The points contained in TT are called {\em inliers} and the remaining points are {\em outliers}. This problem has received considerable attention in computer science and in statistics. Yet efficient algorithms from computer science are not robust to {\em adversarial} outliers, and the estimators from robust statistics are hard to compute in high dimensions. Are there algorithms for subspace recovery that are both robust to outliers and efficient? We give an algorithm that finds TT when it contains more than a dn\frac{d}{n} fraction of the points. Hence, for say d=n/2d = n/2 this estimator is both easy to compute and well-behaved when there are a constant fraction of outliers. We prove that it is Small Set Expansion hard to find TT when the fraction of errors is any larger, thus giving evidence that our estimator is an {\em optimal} compromise between efficiency and robustness. As it turns out, this basic problem has a surprising number of connections to other areas including small set expansion, matroid theory and functional analysis that we make use of here.Comment: Appeared in Proceedings of COLT 201
    corecore