19,596 research outputs found

    A new coinductive confluence proof for infinitary lambda calculus

    Full text link
    We present a new and formal coinductive proof of confluence and normalisation of B\"ohm reduction in infinitary lambda calculus. The proof is simpler than previous proofs of this result. The technique of the proof is new, i.e., it is not merely a coinductive reformulation of any earlier proofs. We formalised the proof in the Coq proof assistant.Comment: arXiv admin note: text overlap with arXiv:1501.0435

    No-Signalling Is Equivalent To Free Choice of Measurements

    Full text link
    No-Signalling is a fundamental constraint on the probabilistic predictions made by physical theories. It is usually justified in terms of the constraints imposed by special relativity. However, this justification is not as clear-cut as is usually supposed. We shall give a different perspective on this condition by showing an equivalence between No-Signalling and Lambda Independence, or "free choice of measurements", a condition on hidden-variable theories which is needed to make no-go theorems such as Bell's theorem non-trivial. More precisely, we shall show that a probability table describing measurement outcomes is No-Signalling if and only if it can be realized by a Lambda-Independent hidden-variable theory of a particular canonical form, in which the hidden variables correspond to non-contextual deterministic predictions of measurement outcomes. The key proviso which avoids contradiction with Bell's theorem is that we consider hidden-variable theories with signed probability measures over the hidden variables - i.e. negative probabilities. Negative probabilities have often been discussed in the literature on quantum mechanics. We use a result proved previously in "The Sheaf-theoretic Structure of Locality and Contextuality" by Abramsky and Brandenburger, which shows that they give rise to, and indeed characterize, the entire class of No-Signalling behaviours. In the present paper, we put this result in a broader context, which reveals the surprising consequence that the No-Signalling condition is equivalent to the apparently completely different notion of free choice of measurements.Comment: In Proceedings QPL 2013, arXiv:1412.791

    Relational Graph Models at Work

    Full text link
    We study the relational graph models that constitute a natural subclass of relational models of lambda-calculus. We prove that among the lambda-theories induced by such models there exists a minimal one, and that the corresponding relational graph model is very natural and easy to construct. We then study relational graph models that are fully abstract, in the sense that they capture some observational equivalence between lambda-terms. We focus on the two main observational equivalences in the lambda-calculus, the theory H+ generated by taking as observables the beta-normal forms, and H* generated by considering as observables the head normal forms. On the one hand we introduce a notion of lambda-K\"onig model and prove that a relational graph model is fully abstract for H+ if and only if it is extensional and lambda-K\"onig. On the other hand we show that the dual notion of hyperimmune model, together with extensionality, captures the full abstraction for H*
    corecore