2 research outputs found

    Learning and Optimization with Bayesian Hybrid Models

    Full text link
    Bayesian hybrid models fuse physics-based insights with machine learning constructs to correct for systematic bias. In this paper, we compare Bayesian hybrid models against physics-based glass-box and Gaussian process black-box surrogate models. We consider ballistic firing as an illustrative case study for a Bayesian decision-making workflow. First, Bayesian calibration is performed to estimate model parameters. We then use the posterior distribution from Bayesian analysis to compute optimal firing conditions to hit a target via a single-stage stochastic program. The case study demonstrates the ability of Bayesian hybrid models to overcome systematic bias from missing physics with less data than the pure machine learning approach. Ultimately, we argue Bayesian hybrid models are an emerging paradigm for data-informed decision-making under parametric and epistemic uncertainty.Comment: Submitted to 2020 American Control Conferenc

    GPdoemd: a Python package for design of experiments for model discrimination

    Full text link
    Model discrimination identifies a mathematical model that usefully explains and predicts a given system's behaviour. Researchers will often have several models, i.e. hypotheses, about an underlying system mechanism, but insufficient experimental data to discriminate between the models, i.e. discard inaccurate models. Given rival mathematical models and an initial experimental data set, optimal design of experiments suggests maximally informative experimental observations that maximise a design criterion weighted by prediction uncertainty. The model uncertainty requires gradients, which may not be readily available for black-box models. This paper (i) proposes a new design criterion using the Jensen-R\'enyi divergence, and (ii) develops a novel method replacing black-box models with Gaussian process surrogates. Using the surrogates, we marginalise out the model parameters with approximate inference. Results show these contributions working well for both classical and new test instances. We also (iii) introduce and discuss GPdoemd, the open-source implementation of the Gaussian process surrogate method
    corecore