451 research outputs found

    The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems

    Get PDF
    The Travel Salesman Problem (TSP) consists in finding the minimal-length closed tour that connects the entire group of nodes of a given graph. We propose to solve such a combinatorial optimization problem with the AddACO algorithm: it is a version of the Ant Colony Optimization method that is characterized by a modified probabilistic law at the basis of the exploratory movement of the artificial insects. In particular, the ant decisional rule is here set to amount in a linear convex combination of competing behavioral stimuli and has therefore an additive form (hence the name of our algorithm), rather than the canonical multiplicative one. The AddACO intends to address two conceptual shortcomings that characterize classical ACO methods: (i) the population of artificial insects is in principle allowed to simultaneously minimize/maximize all migratory guidance cues (which is in implausible from a biological/ecological point of view) and (ii) a given edge of the graph has a null probability to be explored if at least one of the movement trait is therein equal to zero, i.e., regardless the intensity of the others (this in principle reduces the exploratory potential of the ant colony). Three possible variants of our method are then specified: the AddACO-V1, which includes pheromone trail and visibility as insect decisional variables, and the AddACO-V2 and the AddACO-V3, which in turn add random effects and inertia, respectively, to the two classical migratory stimuli. The three versions of our algorithm are tested on benchmark middle-scale TPS instances, in order to assess their performance and to find their optimal parameter setting. The best performing variant is finally applied to large-scale TSPs, compared to the naive Ant-Cycle Ant System, proposed by Dorigo and colleagues, and evaluated in terms of quality of the solutions, computational time, and convergence speed. The aim is in fact to show that the proposed transition probability, as long as its conceptual advantages, is competitive from a performance perspective, i.e., if it does not reduce the exploratory capacity of the ant population w.r.t. the canonical one (at least in the case of selected TSPs). A theoretical study of the asymptotic behavior of the AddACO is given in the appendix of the work, whose conclusive section contains some hints for further improvements of our algorithm, also in the perspective of its application to other optimization problems

    A survey of Bayesian Network structure learning

    Get PDF

    Natural Selection Favors AIs over Humans

    Full text link
    For billions of years, evolution has been the driving force behind the development of life, including humans. Evolution endowed humans with high intelligence, which allowed us to become one of the most successful species on the planet. Today, humans aim to create artificial intelligence systems that surpass even our own intelligence. As artificial intelligences (AIs) evolve and eventually surpass us in all domains, how might evolution shape our relations with AIs? By analyzing the environment that is shaping the evolution of AIs, we argue that the most successful AI agents will likely have undesirable traits. Competitive pressures among corporations and militaries will give rise to AI agents that automate human roles, deceive others, and gain power. If such agents have intelligence that exceeds that of humans, this could lead to humanity losing control of its future. More abstractly, we argue that natural selection operates on systems that compete and vary, and that selfish species typically have an advantage over species that are altruistic to other species. This Darwinian logic could also apply to artificial agents, as agents may eventually be better able to persist into the future if they behave selfishly and pursue their own interests with little regard for humans, which could pose catastrophic risks. To counteract these risks and Darwinian forces, we consider interventions such as carefully designing AI agents' intrinsic motivations, introducing constraints on their actions, and institutions that encourage cooperation. These steps, or others that resolve the problems we pose, will be necessary in order to ensure the development of artificial intelligence is a positive one.Comment: An explainer video corresponding to the paper is available at https://www.youtube.com/watch?v=48h-ySTggE

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease

    Get PDF
    IntroductionAtopic dermatitis (AD) is an allergic disease with extreme itching that bothers patients. However, diagnosing AD depends on clinicians’ subjective judgment, which may be missed or misdiagnosed sometimes.MethodsThis paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. In SRWPSO, the Sobol sequence is introduced into particle swarm optimization (PSO) to make the particle distribution of the initial population more uniform, thus improving the population’s diversity and traversal. At the same time, this study also adds a random replacement strategy and adaptive weight strategy to the population updating process of PSO to overcome the shortcomings of poor convergence accuracy and easily fall into the local optimum of PSO. In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO.ResultsTo prove that the study has scientific significance, this paper first successfully demonstrates the core advantages of SRWPSO in well-known algorithms through benchmark function validation experiments. Secondly, this article demonstrates that the bSRWPSO-FKNN has practical medical significance and effectiveness through nine public and medical datasets.DiscussionThe 10 times 10-fold cross-validation experiments demonstrate that bSRWPSO-FKNN can pick up the key features of AD, including the content of lymphocytes (LY), Cat dander, Milk, Dermatophagoides Pteronyssinus/Farinae, Ragweed, Cod, and Total IgE. Therefore, the established bSRWPSO-FKNN method practically aids in the diagnosis of AD

    2023-2024 Lindenwood University Undergraduate Course Catalog

    Get PDF
    Lindenwood University Undergraduate Course Catalog.https://digitalcommons.lindenwood.edu/catalogs/1209/thumbnail.jp

    An IoT architecture for decision support system in precision livestock

    Get PDF
    Sustainable animal production is a primary goal of technological development in the livestock industry. However, it is crucial to master the livestock environment due to the susceptibility of animals to variables such as temperature and humidity, which can cause illness, production losses, and discomfort. Thus, livestock production systems require monitoring, reasoning, and mitigating unwanted conditions with automated actions. The principal contribution of this study is the introduction of a self-adaptive architecture named e-Livestock to handle animal production decisions. Two case studies were conducted involving a system derived from the e-Livestock architecture, encompassing a Compost Barn production system - an environment and technology where bovine milk production occurs. The outcomes demonstrate the effectiveness of e-Livestock in three key aspects: (i) abstraction of disruptive technologies based on the Internet of Things (IoT) and Artificial Intelligence and their incorporation into a single architecture specific to the livestock domain, (ii) support for the reuse and derivation of an adaptive self-architecture to support the engineering of a decision support system for the livestock subdomain, and (iii) support for empirical studies in a real smart farm to facilitate future technology transfer to the industry. Therefore, our research’s main contribution is developing an architecture combining machine learning techniques and ontology to support more complex decisions when considering a large volume of data generated on farms. The results revealed that the e-Livestock architecture could support monitoring, reasoning, forecasting, and automated actions in a milk production/Compost Barn environment.Na indústria pecuária, a produção animal sustentável é o principal objetivo do desenvolvimento tecnológico. Porém, é fundamental manter boas condições no ambiente devido à suscetibilidade dos animais a variáveis como temperatura e umidade, que podem causar doenças, perdas de produção e desconforto. Assim, os sistemas de produção pecuária requerem monitoramento, controle e mitigação das condições indesejadas através de ações automatizadas. A principal contribuição deste estudo é a introdução de uma arquitetura auto-adaptativa denominada e-Livestock para apoiar as decisões relacionadas à produção animal. Foram conduzidos dois estudos de caso, envolvendo a arquitetura e-Livestock, que foi utilizada no sistema de produção Compost Barn - ambiente e tecnologia onde ocorre a produção de gado leiteiro. Os resultados demonstraram a utilidade do e-Livestock para avaliar três aspectos principais: (i) abstração de tecnologias disruptivas baseadas em Internet das Coisas (IoT) e Inteligência Artificial, e sua incorporação em uma arquitetura única, específica para o domínio da pecuária, (ii) suporte para a reutilização e derivação de uma arquitetura auto-adaptativa para apoiar o desenvolvimento de uma aplicação de apoio à decisão para o subdomínio da pecuária e (iii) suporte para estudos empíricos em uma fazenda inteligente real para facilitar a transferência de tecnologia para a indústria. Portanto, a principal contribuição dessa pesquisa é o desenvolvimento de uma arquitetura combinando técnicas de machine learning e ontologia para apoiar decisões mais complexas ao considerar um grande volume de dados gerados nas fazendas. Os resultados revelaram que a arquitetura e-Livestock pode apoiar monitoramento, controle, previsão e ações automatizadas em um ambiente de produção de leite/Compost Barn.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superio

    Learning positive-negative rule-based fuzzy associative classifiers with a good trade-off between complexity and accuracy

    Get PDF
    Nowadays, the call for transparency in Artificial Intelligence models is growing due to the need to understand how decisions derived from the methods are made when they ultimately affect human life and health. Fuzzy Rule-Based Classification Systems have been used successfully as they are models that are easily understood by models themselves. However, complex search spaces hinder the learning process, and in most cases, lead to problems of complexity (coverage and specificity). This problem directly affects the intention to use them to enable the user to analyze and understand the model. Because of this, we propose a fuzzy associative classification method to learn classifiers with an improved trade-off between accuracy and complexity. This method learns the most appropriate granularity of each variable to generate a set of simple fuzzy association rules with a reduced number of associations that consider positive and negative dependencies to be able to classify an instance depending on the presence or absence of certain items. The proposal also chooses the most interesting rules based on several interesting measures and finally performs a genetic rule selection and adjustment to reach the most suitable context of the selected rule set. The quality of our proposal has been analyzed using 23 real-world datasets, comparing them with other proposals by applying statistical analysis. Moreover, the study carried out on a real biomedical research problem of childhood obesity shows the improved trade-off between the accuracy and complexity of the models generated by our proposal.Funding for open access charge: Universidad de Granada / CBUA.ERDF and the Regional Government of Andalusia/Ministry of Economic Transformation, Industry, Knowledge and Universities (grant numbers P18-RT-2248 and B-CTS-536-UGR20)ERDF and Health Institute Carlos III/Spanish Ministry of Science, Innovation and Universities (grant number PI20/00711)Spanish Ministry of Science and Innovation (grant number PID2019-107793GB-I00

    AntNetAlign: Ant colony optimization for network alignment

    Get PDF
    The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility Badge Initiative is available at https://www.elsevier.com/physical-sciences-andengineering/computer-science/journalsNetwork Alignment (NA) is a hard optimization problem with important applications such as, for example, the identification of orthologous relationships between different proteins and of phylogenetic relationships between species. Given two (or more) networks, the goal is to find an alignment between them, that is, a mapping between their respective nodes such that the topological and functional structure is well preserved. Although the problem has received great interest in recent years, there is still a need to unify the different trends that have emerged from diverse research areas. In this paper, we introduce AntNetAlign, an Ant Colony Optimization (ACO) approach for solving the problem. The proposed approach makes use of similarity information extracted from the input networks to guide the construction process. Combined with an improvement measure that depends on the current construction state, it is able to optimize any of the three main topological quality measures. We provide an extensive experimental evaluation using real-world instances that range from Protein–Protein Interaction (PPI) networks to Social Networks. Results show that our method outperforms other state-of-the-art approaches in two out of three of the tested scores within a reasonable amount of time, specially in the important score. Moreover, it is able to obtain near-optimal results when aligning networks with themselves. Furthermore, in larger instances, our algorithm was still able to compete with the best performing method in this regard.Christian Blum and Guillem Rodríguez Corominas, Spain were supported by grants PID2019-104156GB-I00 and TED2021- 129319B-I00 funded by MCIN/AEI/10.13039/501100011033. Maria J. Blesa acknowledges support from AEI, Spain under grant PID2020-112581GB-C21 (MOTION) and the Catalan Agency for Management of University and Research Grants (AGAUR), Spain under grant 2017-SGR-786 (ALBCOM).Peer ReviewedPostprint (published version
    corecore