41,421 research outputs found

    From Word to Sense Embeddings: A Survey on Vector Representations of Meaning

    Get PDF
    Over the past years, distributed semantic representations have proved to be effective and flexible keepers of prior knowledge to be integrated into downstream applications. This survey focuses on the representation of meaning. We start from the theoretical background behind word vector space models and highlight one of their major limitations: the meaning conflation deficiency, which arises from representing a word with all its possible meanings as a single vector. Then, we explain how this deficiency can be addressed through a transition from the word level to the more fine-grained level of word senses (in its broader acceptation) as a method for modelling unambiguous lexical meaning. We present a comprehensive overview of the wide range of techniques in the two main branches of sense representation, i.e., unsupervised and knowledge-based. Finally, this survey covers the main evaluation procedures and applications for this type of representation, and provides an analysis of four of its important aspects: interpretability, sense granularity, adaptability to different domains and compositionality.Comment: 46 pages, 8 figures. Published in Journal of Artificial Intelligence Researc

    Learning New Facts From Knowledge Bases With Neural Tensor Networks and Semantic Word Vectors

    Full text link
    Knowledge bases provide applications with the benefit of easily accessible, systematic relational knowledge but often suffer in practice from their incompleteness and lack of knowledge of new entities and relations. Much work has focused on building or extending them by finding patterns in large unannotated text corpora. In contrast, here we mainly aim to complete a knowledge base by predicting additional true relationships between entities, based on generalizations that can be discerned in the given knowledgebase. We introduce a neural tensor network (NTN) model which predicts new relationship entries that can be added to the database. This model can be improved by initializing entity representations with word vectors learned in an unsupervised fashion from text, and when doing this, existing relations can even be queried for entities that were not present in the database. Our model generalizes and outperforms existing models for this problem, and can classify unseen relationships in WordNet with an accuracy of 75.8%

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1
    • …
    corecore