47,938 research outputs found

    Towards Data-driven Simulation of End-to-end Network Performance Indicators

    Full text link
    Novel vehicular communication methods are mostly analyzed simulatively or analytically as real world performance tests are highly time-consuming and cost-intense. Moreover, the high number of uncontrollable effects makes it practically impossible to reevaluate different approaches under the exact same conditions. However, as these methods massively simplify the effects of the radio environment and various cross-layer interdependencies, the results of end-to-end indicators (e.g., the resulting data rate) often differ significantly from real world measurements. In this paper, we present a data-driven approach that exploits a combination of multiple machine learning methods for modeling the end-to-end behavior of network performance indicators within vehicular networks. The proposed approach can be exploited for fast and close to reality evaluation and optimization of new methods in a controllable environment as it implicitly considers cross-layer dependencies between measurable features. Within an example case study for opportunistic vehicular data transfer, the proposed approach is validated against real world measurements and a classical system-level network simulation setup. Although the proposed method does only require a fraction of the computation time of the latter, it achieves a significantly better match with the real world evaluations

    Planning as Optimization: Dynamically Discovering Optimal Configurations for Runtime Situations

    Full text link
    The large number of possible configurations of modern software-based systems, combined with the large number of possible environmental situations of such systems, prohibits enumerating all adaptation options at design time and necessitates planning at run time to dynamically identify an appropriate configuration for a situation. While numerous planning techniques exist, they typically assume a detailed state-based model of the system and that the situations that warrant adaptations are known. Both of these assumptions can be violated in complex, real-world systems. As a result, adaptation planning must rely on simple models that capture what can be changed (input parameters) and observed in the system and environment (output and context parameters). We therefore propose planning as optimization: the use of optimization strategies to discover optimal system configurations at runtime for each distinct situation that is also dynamically identified at runtime. We apply our approach to CrowdNav, an open-source traffic routing system with the characteristics of a real-world system. We identify situations via clustering and conduct an empirical study that compares Bayesian optimization and two types of evolutionary optimization (NSGA-II and novelty search) in CrowdNav

    Predicting the dissolution kinetics of silicate glasses using machine learning

    Full text link
    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties

    Should Optimal Designers Worry About Consideration?

    Full text link
    Consideration set formation using non-compensatory screening rules is a vital component of real purchasing decisions with decades of experimental validation. Marketers have recently developed statistical methods that can estimate quantitative choice models that include consideration set formation via non-compensatory screening rules. But is capturing consideration within models of choice important for design? This paper reports on a simulation study of a vehicle portfolio design when households screen over vehicle body style built to explore the importance of capturing consideration rules for optimal designers. We generate synthetic market share data, fit a variety of discrete choice models to the data, and then optimize design decisions using the estimated models. Model predictive power, design "error", and profitability relative to ideal profits are compared as the amount of market data available increases. We find that even when estimated compensatory models provide relatively good predictive accuracy, they can lead to sub-optimal design decisions when the population uses consideration behavior; convergence of compensatory models to non-compensatory behavior is likely to require unrealistic amounts of data; and modeling heterogeneity in non-compensatory screening is more valuable than heterogeneity in compensatory trade-offs. This supports the claim that designers should carefully identify consideration behaviors before optimizing product portfolios. We also find that higher model predictive power does not necessarily imply better design decisions; that is, different model forms can provide "descriptive" rather than "predictive" information that is useful for design.Comment: 5 figures, 26 pages. In Press at ASME Journal of Mechanical Design (as of 3/17/15
    • …
    corecore