12,661 research outputs found

    Image Forgery Localization Based on Multi-Scale Convolutional Neural Networks

    Full text link
    In this paper, we propose to utilize Convolutional Neural Networks (CNNs) and the segmentation-based multi-scale analysis to locate tampered areas in digital images. First, to deal with color input sliding windows of different scales, a unified CNN architecture is designed. Then, we elaborately design the training procedures of CNNs on sampled training patches. With a set of robust multi-scale tampering detectors based on CNNs, complementary tampering possibility maps can be generated. Last but not least, a segmentation-based method is proposed to fuse the maps and generate the final decision map. By exploiting the benefits of both the small-scale and large-scale analyses, the segmentation-based multi-scale analysis can lead to a performance leap in forgery localization of CNNs. Numerous experiments are conducted to demonstrate the effectiveness and efficiency of our method.Comment: 7 pages, 6 figure

    Lung Nodule Classification by the Combination of Fusion Classifier and Cascaded Convolutional Neural Networks

    Full text link
    Lung nodule classification is a class imbalanced problem, as nodules are found with much lower frequency than non-nodules. In the class imbalanced problem, conventional classifiers tend to be overwhelmed by the majority class and ignore the minority class. We showed that cascaded convolutional neural networks can classify the nodule candidates precisely for a class imbalanced nodule candidate data set in our previous study. In this paper, we propose Fusion classifier in conjunction with the cascaded convolutional neural network models. To fuse the models, nodule probabilities are calculated by using the convolutional neural network models at first. Then, Fusion classifier is trained and tested by the nodule probabilities. The proposed method achieved the sensitivity of 94.4% and 95.9% at 4 and 8 false positives per scan in Free Receiver Operating Characteristics (FROC) curve analysis, respectively.Comment: Draft of ISBI2018. arXiv admin note: text overlap with arXiv:1703.0031

    Sparse 3D convolutional neural networks

    Full text link
    We have implemented a convolutional neural network designed for processing sparse three-dimensional input data. The world we live in is three dimensional so there are a large number of potential applications including 3D object recognition and analysis of space-time objects. In the quest for efficiency, we experiment with CNNs on the 2D triangular-lattice and 3D tetrahedral-lattice.Comment: BMVC 201

    Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep cnn

    Full text link
    This paper presents an image classification based approach for skeleton-based video action recognition problem. Firstly, A dataset independent translation-scale invariant image mapping method is proposed, which transformes the skeleton videos to colour images, named skeleton-images. Secondly, A multi-scale deep convolutional neural network (CNN) architecture is proposed which could be built and fine-tuned on the powerful pre-trained CNNs, e.g., AlexNet, VGGNet, ResNet etal.. Even though the skeleton-images are very different from natural images, the fine-tune strategy still works well. At last, we prove that our method could also work well on 2D skeleton video data. We achieve the state-of-the-art results on the popular benchmard datasets e.g. NTU RGB+D, UTD-MHAD, MSRC-12, and G3D. Especially on the largest and challenge NTU RGB+D, UTD-MHAD, and MSRC-12 dataset, our method outperforms other methods by a large margion, which proves the efficacy of the proposed method
    • …
    corecore