659 research outputs found

    Introduction dans les théories de la relativité

    Get PDF
    According to general relativity, the gravitational force is a manifestation of the geometry of local spacetime. RG is a metric theory of gravity. It is based on Einstein's equations, which describe the relationship between the geometry of a four-dimensional pseudo-Riemannian manifold, representing spacetime, and the energy-momentum contained within that spacetime. Gravity is changes in spatial and temporal properties, which in turn change the paths of objects. Curvature is caused by the energy-momentum of matter. According to John Archibald Wheeler, spacetime tells matter how to move, and matter tells spacetime how to bend

    `Iconoclastic', Categorical Quantum Gravity

    Full text link
    This is a two-part, `2-in-1' paper. In Part I, the introductory talk at `Glafka--2004: Iconoclastic Approaches to Quantum Gravity' international theoretical physics conference is presented in paper form (without references). In Part II, the more technical talk, originally titled ``Abstract Differential Geometric Excursion to Classical and Quantum Gravity'', is presented in paper form (with citations). The two parts are closely entwined, as Part I makes general motivating remarks for Part II.Comment: 34 pages, in paper form 2 talks given at ``Glafka--2004: Iconoclastic Approaches to Quantum Gravity'' international theoretical physics conference, Athens, Greece (summer 2004

    Semiclassical and Quantum Field Theoretic Bounds for Traversable Lorentzian Stringy Wormholes

    Full text link
    A lower bound on the size of a Lorentzian wormhole can be obtained by semiclassically introducing the Planck cut-off on the magnitude of tidal forces (Horowitz-Ross constraint). Also, an upper bound is provided by the quantum field theoretic constraint in the form of the Ford-Roman Quantum Inequality for massless minimally coupled scalar fields. To date, however, exact static solutions belonging to this scalar field theory have not been worked out to verify these bounds. To fill this gap, we examine the wormhole features of two examples from the Einstein frame description of the vacuum low energy string theory in four dimensions which is the same as the minimally coupled scalar field theory. Analyses in this paper support the conclusion of Ford and Roman that wormholes in this theory can have sizes that are indeed only a few order of magnitudes larger than the Planck scale. It is shown that the two types of bounds are also compatible. In the process, we point out a "wormhole" analog of naked black holes.Comment: 15 page

    The singularities as ontological limits of the general relativity

    Get PDF
    The singularities from the general relativity resulting by solving Einstein's equations were and still are the subject of many scientific debates: Are there singularities in spacetime, or not? Big Bang was an initial singularity? If singularities exist, what is their ontology? Is the general theory of relativity a theory that has shown its limits in this case? In this essay I argue that there are singularities, and the general theory of relativity, as any other scientific theory at present, is not valid for singularities. But that does not mean, as some scientists think, that it must be regarded as being obsolete. After a brief presentation of the specific aspects of Newtonian classical theory and the special theory of relativity, and a brief presentation of the general theory of relativity, the chapter Ontology of General Relativity presents the ontological aspects of general relativity. The next chapter, Singularities, is dedicated to the presentation of the singularities resulting in general relativity, the specific aspects of the black holes and the event horizon, including the Big Bang debate as original singularity, and arguments for the existence of the singularities. In Singularity Ontology, I am talking about the possibilities of ontological framing of singularities in general and black holes in particular, about the hole argument highlighted by Einstein, and the arguments presented by scientists that there are no singularities and therefore that the general theory of relativity is in deadlock. In Conclusions I outline and summarize briefly the arguments that support my above views. DOI: 10.58679/TW6232

    Classical theory of singularities

    Get PDF
    The singularities from the general relativity resulting by solving Einstein's equations were and still are the subject of many scientific debates: Are there singularities in spacetime, or not? Big Bang was an initial singularity? If singularities exist, what is their ontology? Is the general theory of relativity a theory that has shown its limits in this case
    • …
    corecore