8 research outputs found

    High speed protocols for dual bus and dual ring network architectures

    Get PDF
    In this dissertation, two channel access mechanisms providing fair and bandwidth efficient transmission on dual bus and dual ring networks with high bandwidth-latency product are proposed. In addition, two effective priority mechanisms are introduced to meet the throughput and delay requirements of the diverse arrays of applications that future high speed networks must support. For dual bus architectures, the Buffer Insertion Bandwidth Balancing (BI_BWB) mechanism and the Preemptive priority Bandwidth Balancing (P_BI_BWB) mechanism are proposed. BI_BWB can significantly improve the delay performance of remote stations. It achieves that by providing each station with a shift register into which the station can temporarily store the upstream stations\u27 transmitted packets and replace these packets with its own transmissions. P_BI_BWB, an enhancement of BI_BWB, is designed to introduce effective preemptive priorities. This mechanism eliminates the effect of low priority on high priority by buffering the low priority traffic into a shift register until the transmission of the high priority traffic is complete. For dual ring architectures, the Fair Bandwidth Allocation Mechanism (FBAM) and the Effective Priority Bandwidth Balancing (EP_BWB) mechanism are introduced. FBAM allows stations to reserve channel bandwidth on a continuous basis rather than wait until bandwidth starvation is observed. Consequently, FBAM does not have to deal with the difficult issue of identifying starvation, a serious drawback of other access mechanisms such as the Local and Global Fairness Algorithms (LFA and GFA, respectively). In addition, its operation requires a significantly smaller number of control bits in the access control field of the slot and its performance is less sensitive to system parameters. Moreover, FBAM demonstrates Max-Min flow control properties with respect to the allocation of bandwidth among competing traffic streams, which is a significant advantage of FBAM over all the previously proposed channel access mechanisms. EP_BWB, an enhancement of FBAM to support preemptive priorities, minimizes the effect of low priority on high priority and supports delay-sensitive traffic by enabling higher priority classes to preempt the transmissions of lower priority classes. Finally, the great potential of EP_BWB to support the interconnection of base stations on a distributed control wireless PCN carrying voice and data traffic is demonstrated

    Delay analysis for wireless applications using a multiservice multiqueue processor sharing model

    Get PDF
    The ongoing development of wireless networks supporting multimedia applications requires service providers to efficiently deliver complex Quality of Service (QoS) requirements. The wide range of new applications in these networks significantly increases the difficulty of network design and dimensioning to meet QoS requirements. Medium Access Control (MAC) protocols affect QoS achieved by wireless networks. Research on analysis and performance evaluation is important for the efficient protocol design. As wireless networks feature scarce resources that are simultaneously shared by all users, processor sharing (PS) models were proposed for modelling resource sharing mechanisms in such systems. In this thesis, multi-priority MAC protocols are proposed for handling the various service traffic types. Then, an investigation of multiservice multiqueue PS models is undertaken to analyse the delay for some recently proposed wireless applications. We start with an introduction to MAC protocols for wireless networks which are specified in IEEE standards and then review scheduling algorithms which were proposed to work with the underlying MAC protocols to cooperatively achieve QoS goals. An overview of the relevant literature is given on PS models for performance analysis and evaluation of scheduling algorithms. We propose a multiservice multiqueue PS model using a scheduling scheme in multimedia wireless networks with a comprehensive description of the analytical solution. Firstly, we describe the existing multiqueue processor sharing (MPS) model, which uses a fixed service quantum at each queue, and correct a subtle incongruity in previous solutions presented in the literature. Secondly, a new scheduling framework is proposed to extend the previous MPS model to a general case. This newly proposed analytical approach is based on the idea that the service quantum arranged by a MAC scheduling controller to service data units can be priority-based. We obtain a closed-form expression for the mean delay of each service class in this model. In summary, our new approach simplifies MAC protocols for multimedia applications into an analytical model that includes more complex and realistic traffic models without compromising details of the protocol and significantly reduces the number of MAC headers, thus the overall average delay will be decreased. In response to using the studied multiservice multiqueue PS models, we apply the MPS model to two wireless applications: Push to Talk (PTT) service over GPRS/GSM networks and the Worldwide Interoperability for Microwave Access (WiMAX) networks. We investigate the uplink delay of PTT over traditional GPRS/GSM networks and the uplink delay for WiMAX Subscriber Station scheduler under a priority-based fair scheduling. MAC structures capable of supporting dynamically varying traffic are studied for the networks, especially, with the consideration of implementation issues. The model provides useful insights into the dynamic performance behaviours of GPRS/GSM and WiMAX networks with respect to various system parameters and comprehensive traffic conditions. We then evaluate the model under some different practical traffic scenarios. Through modelling of the operation of wireless access systems, under a variety of multimedia traffic, our analytical approaches provide practical analysis guidelines for wireless network dimensioning

    Advanced modelling of adaptive bitrate selection

    Get PDF
    Nowadays, a typical video content provider serves a variety of platforms e.g. smartphones, web browsers, and smart TVs. Each of these platforms has specific requirements with respect to transmission and video quality. Moreover, since these devices are increasingly being used on-the-go, the environment within which most of these video streaming clients operate is both unreliable and time-varying. To cater for these heterogeneous requirements, content providers are increasingly adopting adaptive streaming services. Through such services, the quality of the video content received by a user is adapted to fit its specific requirements and capabilities. To adapt the video quality, system capabilities such as network capacity and memory have to be continuously monitored and measured, chunk requests have to be scheduled, and then the optimal video rate has to be decided. Each of these tasks is usually managed by a sub-module of the adaptive bitrate selection function. However, these sub-components interact in a non-trivial manner. For example, while on-off chunk scheduling helps to prevent buffer overflow, it negatively affects the TCP throughput. Hence, these complex interactions between these different sub-components of the adaptive streaming algorithm result in unnecessary rebufferings, undesirable variability, and sub-optimal video quality. To help simplify these interactions, this thesis develops several frameworks and models that define the relationships between the various components of the adaptive bitrate selection system. This includes deriving the valid system state space, which defines the state that an algorithm can be in at any given time, determining the allowable interactions between the various components, and identifying the video quality evolution rules that optimise QoE. Using this information, some state-of-the-art algorithms are improved and novel ones developed to demonstrate the effectiveness of the proposed approach. The result of extensive evaluations conducted both within a real-world Internet environment and with network trace shows the proposed schemes help in reducing the convergence time, startup delay, and rebuffering events, while at the same time increasing both the average and the stability of the video quality. All this is obtained without any adverse impact on the fairness among the competing players

    La Salle University Academic Bulletin 1995-1996

    Get PDF
    Issued for La Salle University 1995-1996https://digitalcommons.lasalle.edu/course_catalogs/1158/thumbnail.jp

    Génération automatique de résumés par analyse sélective

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    La Salle University Academic Bulletin 1996-1997

    Get PDF
    Issued for La Salle University 1996-1997https://digitalcommons.lasalle.edu/course_catalogs/1160/thumbnail.jp
    corecore