4 research outputs found

    Mobile Identity, Credential, and Access Management Framework

    Get PDF
    Organizations today gather unprecedented quantities of data from their operations. This data is coming from transactions made by a person or from a connected system/application. From personal devices to industry including government, the internet has become the primary means of modern communication, further increasing the need for a method to track and secure these devices. Protecting the integrity of connected devices collecting data is critical to ensure the trustworthiness of the system. An organization must not only know the identity of the users on their networks and have the capability of tracing the actions performed by a user but they must trust the system providing them with this knowledge. This increase in the pace of usage of personal devices along with a lack of trust in the internet has driven demand for trusted digital identities. As the world becomes increasingly mobile with the number of smart phone users growing annually and the mobile web flourishing, it is critical to implement strong security on mobile devices. To manage the vast number of devices and feel confident that a machine’s identity is verifiable, companies need to deploy digital credentialing systems with a strong root of trust. As passwords are not a secure method of authentication, mobile devices and other forms of IoT require a means of two-factor authentication that meets NIST standards. Traditionally, this has been done with Public Key Infrastructure (PKI) through the use of a smart card. Blockchain technologies combined with PKI can be utilized in such a way as to provide an identity and access management solution for the internet of things (IoT). Improvements to the security of Radio Frequency Identification (RFID) technology and various implementations of blockchain make viable options for managing the identity and access of IoT devices. When PKI first began over two decades ago, it required the use of a smart card with a set of credentials known as the personal identity verification (PIV) card. The PIV card (something you have) along with a personal identification number (PIN) (something you know) were used to implement two-factor authentication. Over time the use of the PIV cards has proven challenging as mobile devices lack the integrated smart card readers found in laptop and desktop computers. Near Field Communication (NFC) capability in most smart phones and mobile devices provides a mechanism to allow a PIV card to be read by a mobile device. In addition, the existing PKI system must be updated to meet the demands of a mobile focused internet. Blockchain technology is the key to modernizing PKI. Together, blockchain-based PKI and NFC will provide an IoT solution that will allow industry, government, and individuals a foundation of trust in the world wide web that is lacking today

    The potential use of smart cards in vehicle management with particular reference to the situation in Western Australia

    Get PDF
    Vehicle management may be considered to consist of traffic management, usage control, maintenance, and security. Various regulatory authorities undertake the first aspect, fleet managers will be concerned with all aspects, and owner-drivers will be interested mainly in maintenance and security. Car theft poses a universal security problem. Personalisation, including navigational assistance, might be achieved as a by-product of an improved management system. Authorities and fleet managers may find smartcards to be key components of an improved system, but owners may feel that the need for improved security does not justify its cost. This thesis seeks to determine whether smartcards may be used to personalise vehicles in order to improve vehicle management within a forseeable time and suggest when it might happen. In the process four broad questions are addressed. • First, what improvements in technology are needed to make any improved scheme using smartcards practicable, and what can be expected in the near future? • Second, what problems and difficulties may impede the development of improved management? • Third, what non-vehicle applications might create an environment in which a viable scheme could emerge? • Finally, is there a perceived need for improved vehicle management? The method involved a literature search, the issue of questionnaires to owner drivers and fleet managers, discussions with fleet managers, the preparation of data-flow and state diagrams, and the construction of a simulation of a possible security approach. The study concludes that although vehicle personalisation is possible- and desirable it is unlikely to occur within the next decade because the environment needed to make it practicable will not emerge until a number of commercial and standardisation problems that obstruct all smartcard applications have been solved

    Secure Object Sharing on Java Card

    Get PDF
    This research concerns enhancement in on-card verification of downloaded applets in Java Card technology. In this thesis, we propose the on-card installer with a one-way hash function to support on-card verification of download applets. The hash value generated from the on0card installer is used to verify download applets hwyn they try to gain a SIO from a server applet. This thesis is organized into five chapters and an appendix. Chapter 1, Introduction, depicts the background of Java Card technology, the current problem in the Java Card platform, and the objectives of this research. Chapter 2, Literature Review, introduces fundamental concepts and background knowledge on Smart Card, Java Card, and message digest algorithms. Chapter 3, Secure Object Sharing, presents solution to meet the objectives. Chapter 4, Secure Object Sharing Simulation, simulates the object sharing process between a server applet and a client applet. Chapter 5, Conclusion, draws a conclusion ofenhancement in on-card verification of downloaded applets. Appendix presents source codes that are used for the simulation

    Analysing the behaviour of a smart card based model for secure communication with remote computers over the internet

    Get PDF
    This dissertation presents the findings of a generic model aimed at providing secure communication with remote computers via the Internet, based on smart cards. The results and findings are analysed and presented in great detail, in particular the behaviour and performance of smart cards when used to provide the cryptographic functionality. Two implemented models are presented. The first model uses SSL to secure the communication channel over the Internet while using smart cards for user authentication and storage of cryptographic keys. The second model presents the SSH for channel security and smart cards for user authentication, key storage and actual encryption and decryption of data. The model presented is modular and generic by nature, meaning that it can easily be modified to accept the newer protocol by simply including the protocols in a library and with a minor or no modification to both server and client application software. For example, any new algorithm for encryption, key exchange, signature, or message digest, can be easily accommodated into the system, which proves that the model is generic and can easily be integrated into newer technologies. Similarly, smart cards are used for cryptography. Two options are presented: first the smart cards only store the algorithm keys and user authentication, and secondly, smart cards are used for storing the algorithm keys, user authentication, and actual data encryption or decryption, as the requirement may dictate. This is very useful, for example, if data to be transferred is limited to a few bytes, then actual data encryption and decryption is performed using smart cards. On the other hand, if a great deal of data is to be transferred, then only authentication and key storage are performed with smart cards. The model currently uses 3DES with smart card encryption and decryption, because this is faster and consumes fewer resources when compared to RSA. Once again, the model design is flexible to accommodate new algorithms such as AES or IDEA. Important aspects of the dissertation are the study and analysis of the security attacks on smart card use. Several smart card attack scenarios are presented in CHAPTER 3, and their possible prevention is also discussed in detail. AFRIKAANS : Hierdie verhandeling bied die bevindinge van 'n generiese model wat daarop gemik is om veilige kommunikasie te voorsien met 'n afstandsrekenaar via die Internet en op slimkaarte gebaseer. Die resultate en bevindings word ontleed en breedvoerig aangebied, veral die gedrag en werkverrigting van slimkaarte wanneer hulle gebruik word om die kriptografiese funksionaliteit te voorsien. Daar word twee geïmplementeerde modelle aangebied. Die eerste model gebruik SSL om die kommunikasiekanaal oor die Internet te beveilig terwyl slimkaarte vir gebruikerbekragtiging en stoor van kriptografiese sleutels gebruik word. Die tweede model bied die SSH vir kanaalsekuriteit en slimkaarte vir gebruikergeldigheidvasstelling, sleutelstoor en werklike kodering en dekodering van data. Die model wat aangebied word, is modulêr en generies van aard, wat beteken dat dit maklik gewysig kan word om die jongste protokolle te aanvaar deur bloot die protokolle by 'n programbiblioteek met geringe of geen wysiging van beide die bediener- en kliënttoepassingsagteware in te sluit. Byvoorbeeld, enige nuwe algoritme vir kodering, sleuteluitruiling, handtekening of boodskapbondeling kan maklik in die stelsel gehuisves word, wat bewys dat die model generies is en maklik in jonger tegnologieë geïntegreer kan word. Slimkaarte word op soortgelyke wyse vir kriptografie gebruik. Daar word twee keuses aangebied: eerstens stoor die slimkaarte slegs die algoritmesleutels en gebruikergeldigheidvasstelling en tweedens word slimkaarte gebruik om die algoritmesleutels, gebruikergeldigheidvasstelling en werklike datakodering en –dekodering te stoor na gelang van wat vereis word. Dit is baie nuttig, byvoorbeeld, wanneer data wat oorgedra moet word, tot 'n paar grepe beperk is, word die eintlike datakodering en – dekodering uitgevoer deur slimkaarte te gebruik. Andersyds, indien 'n groot hoeveelheid data oorgedra moet word, word slegs geldigheidvasstelling en stoor met slimkaarte uitgevoer. Die model gebruik tans 3DES met slimkaartkodering en –dekodering omdat dit vinniger is en minder hulpbronne gebruik vergeleke met RSA. Die modelontwerp is weer eens buigsaam om nuwe algoritmes soos AES of IDEA te huisves. Nog 'n belangrike aspek van die verhandeling is om die sekuriteitaanvalle op slimkaartgebruik te ondersoek en te ontleed. Verskeie slimkaartaanvalscenario's word in Hoofstuk 3 aangebied en die moontlike voorkoming daarvan word ook breedvoerig bespreek.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte
    corecore