902 research outputs found

    Privacy Protection Cache Policy on Hybrid Main Memory

    Full text link
    We firstly suggest privacy protection cache policy applying the duty to delete personal information on a hybrid main memory system. This cache policy includes generating random data and overwriting the random data into the personal information. Proposed cache policy is more economical and effective regarding perfect deletion of data.Comment: 2 pages, 3 figures, IEEE Transactions on Very Large Scale Integration Systems. arXiv admin note: text overlap with arXiv:1707.0284

    ReCA: an Efficient Reconfigurable Cache Architecture for Storage Systems with Online Workload Characterization

    Full text link
    In recent years, SSDs have gained tremendous attention in computing and storage systems due to significant performance improvement over HDDs. The cost per capacity of SSDs, however, prevents them from entirely replacing HDDs in such systems. One approach to effectively take advantage of SSDs is to use them as a caching layer to store performance critical data blocks to reduce the number of accesses to disk subsystem. Due to characteristics of Flash-based SSDs such as limited write endurance and long latency on write operations, employing caching algorithms at the Operating System (OS) level necessitates to take such characteristics into consideration. Previous caching techniques are optimized towards only one type of application, which affects both generality and applicability. In addition, they are not adaptive when the workload pattern changes over time. This paper presents an efficient Reconfigurable Cache Architecture (ReCA) for storage systems using a comprehensive workload characterization to find an optimal cache configuration for I/O intensive applications. For this purpose, we first investigate various types of I/O workloads and classify them into five major classes. Based on this characterization, an optimal cache configuration is presented for each class of workloads. Then, using the main features of each class, we continuously monitor the characteristics of an application during system runtime and the cache organization is reconfigured if the application changes from one class to another class of workloads. The cache reconfiguration is done online and workload classes can be extended to emerging I/O workloads in order to maintain its efficiency with the characteristics of I/O requests. Experimental results obtained by implementing ReCA in a server running Linux show that the proposed architecture improves performance and lifetime up to 24\% and 33\%, respectively

    A Survey on Tiering and Caching in High-Performance Storage Systems

    Full text link
    Although every individual invented storage technology made a big step towards perfection, none of them is spotless. Different data store essentials such as performance, availability, and recovery requirements have not met together in a single economically affordable medium, yet. One of the most influential factors is price. So, there has always been a trade-off between having a desired set of storage choices and the costs. To address this issue, a network of various types of storing media is used to deliver the high performance of expensive devices such as solid state drives and non-volatile memories, along with the high capacity of inexpensive ones like hard disk drives. In software, caching and tiering are long-established concepts for handling file operations and moving data automatically within such a storage network and manage data backup in low-cost media. Intelligently moving data around different devices based on the needs is the key insight for this matter. In this survey, we discuss some recent pieces of research that have been done to improve high-performance storage systems with caching and tiering techniques.Comment: Ph.D. Research Exam Repor

    An Efficient Hybrid I/O Caching Architecture Using Heterogeneous SSDs

    Full text link
    SSDs are emerging storage devices which unlike HDDs, do not have mechanical parts and therefore, have superior performance compared to HDDs. Due to the high cost of SSDs, entirely replacing HDDs with SSDs is not economically justified. Additionally, SSDs can endure a limited number of writes before failing. To mitigate the shortcomings of SSDs while taking advantage of their high performance, SSD caching is practiced in both academia and industry. Previously proposed caching architectures have only focused on either performance or endurance and neglected to address both parameters in suggested architectures. Moreover, the cost, reliability, and power consumption of such architectures is not evaluated. This paper proposes a hybrid I/O caching architecture that while offers higher performance than previous studies, it also improves power consumption with a similar budget. The proposed architecture uses DRAM, Read-Optimized SSD, and Write-Optimized SSD in a three-level cache hierarchy and tries to efficiently redirect read requests to either DRAM or RO-SSD while sending writes to WO-SSD. To provide high reliability, dirty pages are written to at least two devices which removes any single point of failure. The power consumption is also managed by reducing the number of accesses issued to SSDs. The proposed architecture reconfigures itself between performance- and endurance-optimized policies based on the workload characteristics to maintain an effective tradeoff between performance and endurance. We have implemented the proposed architecture on a server equipped with industrial SSDs and HDDs. The experimental results show that as compared to state-of-the-art studies, the proposed architecture improves performance and power consumption by an average of 8% and 28%, respectively, and reduces the cost by 5% while increasing the endurance cost by 4.7% and negligible reliability penalty

    LBICA: A Load Balancer for I/O Cache Architectures

    Full text link
    In recent years, enterprise Solid-State Drives (SSDs) are used in the caching layer of high-performance servers to close the growing performance gap between processing units and storage subsystem. SSD-based I/O caching is typically not effective in workloads with burst accesses in which the caching layer itself becomes the performance bottleneck because of the large number of accesses. Existing I/O cache architectures mainly focus on maximizing the cache hit ratio while they neglect the average queue time of accesses. Previous studies suggested bypassing the cache when burst accesses are identified. These schemes, however, are not applicable to a general cache configuration and also result in significant performance degradation on burst accesses. In this paper, we propose a novel I/O cache load balancing scheme (LBICA) with adaptive write policy management to prevent the I/O cache from becoming performance bottleneck in burst accesses. Our proposal, unlike previous schemes, which disable the I/O cache or bypass the requests into the disk subsystem in burst accesses, selectively reduces the number of waiting accesses in the SSD queue and balances the load between the I/O cache and the disk subsystem while providing the maximum performance. The proposed scheme characterizes the workload based on the type of in-queue requests and assigns an effective cache write policy. We aim to bypass the accesses which 1) are served faster by the disk subsystem or 2) cannot be merged with other accesses in the I/O cache queue. Doing so, the selected requests are responded by the disk layer, preventing from overloading the I/O cache. Our evaluations on a physical system shows that LBICA reduces the load on the I/O cache by 48% and improves the performance of burst workloads by 30% compared to the latest state-of-the-art load balancing scheme.Comment: 6 page

    Voltron: Understanding and Exploiting the Voltage-Latency-Reliability Trade-Offs in Modern DRAM Chips to Improve Energy Efficiency

    Full text link
    This paper summarizes our work on experimental characterization and analysis of reduced-voltage operation in modern DRAM chips, which was published in SIGMETRICS 2017, and examines the work's significance and future potential. We take a comprehensive approach to understanding and exploiting the latency and reliability characteristics of modern DRAM when the DRAM supply voltage is lowered below the nominal voltage level specified by DRAM standards. We perform an experimental study of 124 real DDR3L (low-voltage) DRAM chips manufactured recently by three major DRAM vendors. We find that reducing the supply voltage below a certain point introduces bit errors in the data, and we comprehensively characterize the behavior of these errors. We discover that these errors can be avoided by increasing the latency of three major DRAM operations (activation, restoration, and precharge). We perform detailed DRAM circuit simulations to validate and explain our experimental findings. We also characterize the various relationships between reduced supply voltage and error locations, stored data patterns, DRAM temperature, and data retention. Based on our observations, we propose a new DRAM energy reduction mechanism, called Voltron. The key idea of Voltron is to use a performance model to determine by how much we can reduce the supply voltage without introducing errors and without exceeding a user-specified threshold for performance loss. Our evaluations show that Voltron reduces the average DRAM and system energy consumption by 10.5% and 7.3%, respectively, while limiting the average system performance loss to only 1.8%, for a variety of memory-intensive quad-core workloads. We also show that Voltron significantly outperforms prior dynamic voltage and frequency scaling mechanisms for DRAM

    Heterogeneous-Reliability Memory: Exploiting Application-Level Memory Error Tolerance

    Full text link
    This paper summarizes our work on characterizing application memory error vulnerability to optimize datacenter cost via Heterogeneous-Reliability Memory (HRM), which was published in DSN 2014, and examines the work's significance and future potential. Memory devices represent a key component of datacenter total cost of ownership (TCO), and techniques used to reduce errors that occur on these devices increase this cost. Existing approaches to providing reliability for memory devices pessimistically treat all data as equally vulnerable to memory errors. Our key insight is that there exists a diverse spectrum of tolerance to memory errors in new data-intensive applications, and that traditional one-size-fits-all memory reliability techniques are inefficient in terms of cost. This presents an opportunity to greatly reduce server hardware cost by provisioning the right amount of memory reliability for different applications. Toward this end, in our DSN 2014 paper, we make three main contributions to enable highly-reliable servers at low datacenter cost. First, we develop a new methodology to quantify the tolerance of applications to memory errors. Second, using our methodology, we perform a case study of three new data-intensive workloads (an interactive web search application, an in-memory key--value store, and a graph mining framework) to identify new insights into the nature of application memory error vulnerability. Third, based on our insights, we propose several new hardware/software heterogeneous-reliability memory system designs to lower datacenter cost while achieving high reliability and discuss their trade-offs. We show that our new techniques can reduce server hardware cost by 4.7% while achieving 99.90% single server availability.Comment: 4 pages, 4 figures, summary report for DSN 2014 paper: "Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory

    An Operating System Level Data Migration Scheme in Hybrid DRAM-NVM Memory Architecture

    Full text link
    With the emergence of Non-Volatile Memories (NVMs) and their shortcomings such as limited endurance and high power consumption in write requests, several studies have suggested hybrid memory architecture employing both Dynamic Random Access Memory (DRAM) and NVM in a memory system. By conducting a comprehensive experiments, we have observed that such studies lack to consider very important aspects of hybrid memories including the effect of: a) data migrations on performance, b) data migrations on power, and c) the granularity of data migration. This paper presents an efficient data migration scheme at the Operating System level in a hybrid DRAMNVM memory architecture. In the proposed scheme, two Least Recently Used (LRU) queues, one for DRAM section and one for NVM section, are used for the sake of data migration. With careful characterization of the workloads obtained from PARSEC benchmark suite, the proposed scheme prevents unnecessary migrations and only allows migrations which benefits the system in terms of power and performance. The experimental results show that the proposed scheme can reduce the power consumption up to 79% compared to DRAM-only memory and up to 48% compared to the state-of-the art techniques

    ETICA: Efficient Two-Level I/O Caching Architecture for Virtualized Platforms

    Full text link
    In this paper, we propose an Efficient Two-Level I/O Caching Architecture (ETICA) for virtualized platforms that can significantly improve I/O latency, endurance, and cost (in terms of cache size) while preserving the reliability of write-pending data blocks. As opposed to previous one-level I/O caching schemes in virtualized platforms, our proposed architecture 1) provides two levels of cache by employing both Dynamic Random-Access Memory (DRAM) and SSD in the I/O caching layer of virtualized platforms and 2) effectively partitions the cache space between running VMs to achieve maximum performance and minimum cache size. To manage the two-level cache, unlike the previous reuse distance calculation schemes such as Useful Reuse Distance (URD), which only consider the request type and neglect the impact of cache write policy, we propose a new metric, Policy Optimized reuse Distance (POD). The key idea of POD is to effectively calculate the reuse distance and estimate the amount of two-level DRAM+SSD cache space to allocate by considering both 1) the request type and 2) the cache write policy. Doing so results in enhanced performance and reduced cache size due to the allocation of cache blocks only for the requests that would be served by the I/O cache. ETICA maintains the reliability of write-pending data blocks and improves performance by 1) assigning an effective and fixed write policy at each level of the I/O cache hierarchy and 2) employing effective promotion and eviction methods between cache levels. Our extensive experiments conducted with a real implementation of the proposed two-level storage caching architecture show that ETICA provides 45% higher performance, compared to the state-of-the-art caching schemes in virtualized platforms, while improving both cache size and SSD endurance by 51.7% and 33.8%, respectively

    An Analytical Model for Performance and Lifetime Estimation of Hybrid DRAM-NVM Main Memories

    Full text link
    NVMs have promising advantages (e.g., lower idle power, higher density) over the existing predominant main memory technology, DRAM. Yet, NVMs also have disadvantages (e.g., limited endurance). System architects are therefore examining hybrid DRAM-NVM main memories to enable the advantages of NVMs while avoiding the disadvantages as much as possible. Unfortunately, the hybrid memory design space is very large and complex due to the existence of very different types of NVMs and their rapidly-changing characteristics. Therefore, optimization of performance and lifetime of hybrid memory based computing platforms and their experimental evaluation using traditional simulation methods can be very time-consuming and sometimes even impractical. As such, it is necessary to develop a fast and flexible analytical model to estimate the performance and lifetime of hybrid memories on various workloads. This paper presents an analytical model for hybrid memories based on Markov decision processes. The proposed model estimates the hit ratio and lifetime for various configurations of DRAM-NVM hybrid main memories. Our model also provides accurate estimation of the effect of data migration policies on the hybrid memory hit ratio, one of the most important factors in hybrid memory performance and lifetime. Such an analytical model can aid designers to tune hybrid memory configurations to improve performance and/or lifetime. We present several optimizations that make our model more efficient while maintaining its accuracy. Our experimental evaluations show that the proposed model (a) accurately predicts the hybrid memory hit ratio with an average error of 4.61% on a commodity server, (b) accurately estimates the NVM lifetime with an average error of 2.93%, and (c) is on average 4x faster than conventional state-of-the-art simulation platforms for hybrid memories
    • …
    corecore