29,209 research outputs found

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Efficient content-distribution in a hybrid opportunistic network

    Get PDF
    Information or content centric networking is believed by many to have great potential to be the appropriate networking paradigm for the future Internet. In information centric networking, focus is shifted from the end-points in the network to the information objects themselves, with less care being placed on from where the information is fetched. In addition to the benefits this networking paradigm has in fixed networks, it also simplifies operation in mobile networks and has the potential to improve performance. In this paper, we describe one way in which the NetInf network architecture can be used in a hybrid mobile network in an urban setting, and run simulations to evaluate the benefits that this approach can yield, both to the end users (in terms of improved performance such as reduced latency with over 50%), as well as to the operators in terms of a reduction of traffic load in the cellular access networks with up to 97%
    corecore