3 research outputs found

    DeepStyle: Multimodal Search Engine for Fashion and Interior Design

    Full text link
    In this paper, we propose a multimodal search engine that combines visual and textual cues to retrieve items from a multimedia database aesthetically similar to the query. The goal of our engine is to enable intuitive retrieval of fashion merchandise such as clothes or furniture. Existing search engines treat textual input only as an additional source of information about the query image and do not correspond to the real-life scenario where the user looks for 'the same shirt but of denim'. Our novel method, dubbed DeepStyle, mitigates those shortcomings by using a joint neural network architecture to model contextual dependencies between features of different modalities. We prove the robustness of this approach on two different challenging datasets of fashion items and furniture where our DeepStyle engine outperforms baseline methods by 18-21% on the tested datasets. Our search engine is commercially deployed and available through a Web-based application.Comment: Copyright held by IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    De-Hashing: Server-Side Context-Aware Feature Reconstruction for Mobile Visual Search

    Full text link
    Due to the prevalence of mobile devices, mobile search becomes a more convenient way than desktop search. Different from the traditional desktop search, mobile visual search needs more consideration for the limited resources on mobile devices (e.g., bandwidth, computing power, and memory consumption). The state-of-the-art approaches show that bag-of-words (BoW) model is robust for image and video retrieval; however, the large vocabulary tree might not be able to be loaded on the mobile device. We observe that recent works mainly focus on designing compact feature representations on mobile devices for bandwidth-limited network (e.g., 3G) and directly adopt feature matching on remote servers (cloud). However, the compact (binary) representation might fail to retrieve target objects (images, videos). Based on the hashed binary codes, we propose a de-hashing process that reconstructs BoW by leveraging the computing power of remote servers. To mitigate the information loss from binary codes, we further utilize contextual information (e.g., GPS) to reconstruct a context-aware BoW for better retrieval results. Experiment results show that the proposed method can achieve competitive retrieval accuracy as BoW while only transmitting few bits from mobile devices.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    A Practical Guide to CNNs and Fisher Vectors for Image Instance Retrieval

    Full text link
    With deep learning becoming the dominant approach in computer vision, the use of representations extracted from Convolutional Neural Nets (CNNs) is quickly gaining ground on Fisher Vectors (FVs) as favoured state-of-the-art global image descriptors for image instance retrieval. While the good performance of CNNs for image classification are unambiguously recognised, which of the two has the upper hand in the image retrieval context is not entirely clear yet. In this work, we propose a comprehensive study that systematically evaluates FVs and CNNs for image retrieval. The first part compares the performances of FVs and CNNs on multiple publicly available data sets. We investigate a number of details specific to each method. For FVs, we compare sparse descriptors based on interest point detectors with dense single-scale and multi-scale variants. For CNNs, we focus on understanding the impact of depth, architecture and training data on retrieval results. Our study shows that no descriptor is systematically better than the other and that performance gains can usually be obtained by using both types together. The second part of the study focuses on the impact of geometrical transformations such as rotations and scale changes. FVs based on interest point detectors are intrinsically resilient to such transformations while CNNs do not have a built-in mechanism to ensure such invariance. We show that performance of CNNs can quickly degrade in presence of rotations while they are far less affected by changes in scale. We then propose a number of ways to incorporate the required invariances in the CNN pipeline. Overall, our work is intended as a reference guide offering practically useful and simply implementable guidelines to anyone looking for state-of-the-art global descriptors best suited to their specific image instance retrieval problem.Comment: Deep Convolutional Neural Networks for instance retrieval, Fisher Vectors, instance retrieva
    corecore