776 research outputs found

    Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

    Full text link
    We propose a spatial diffuseness feature for deep neural network (DNN)-based automatic speech recognition to improve recognition accuracy in reverberant and noisy environments. The feature is computed in real-time from multiple microphone signals without requiring knowledge or estimation of the direction of arrival, and represents the relative amount of diffuse noise in each time and frequency bin. It is shown that using the diffuseness feature as an additional input to a DNN-based acoustic model leads to a reduced word error rate for the REVERB challenge corpus, both compared to logmelspec features extracted from noisy signals, and features enhanced by spectral subtraction.Comment: accepted for ICASSP201

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Estimation of room acoustic parameters: the ACE challenge

    No full text
    Reverberation Time (T60) and Direct-to-Reverberant Ratio (DRR) are important parameters which together can characterize sound captured by microphones in non-anechoic rooms. These parameters are important in speech processing applications such as speech recognition and dereverberation. The values of T60 and DRR can be estimated directly from the Acoustic Impulse Response (AIR) of the room. In practice, the AIR is not normally available, in which case these parameters must be estimated blindly from the observed speech in the microphone signal. The Acoustic Characterization of Environments (ACE) Challenge aimed to determine the state-of-the-art in blind acoustic parameter estimation and also to stimulate research in this area. A summary of the ACE Challenge, and the corpus used in the challenge is presented together with an analysis of the results. Existing algorithms were submitted alongside novel contributions, the comparative results for which are presented in this paper. The challenge showed that T60 estimation is a mature field where analytical approaches dominate whilst DRR estimation is a less mature field where machine learning approaches are currently more successful

    Environmentally robust ASR front-end for deep neural network acoustic models

    Get PDF
    This paper examines the individual and combined impacts of various front-end approaches on the performance of deep neural network (DNN) based speech recognition systems in distant talking situations, where acoustic environmental distortion degrades the recognition performance. Training of a DNN-based acoustic model consists of generation of state alignments followed by learning the network parameters. This paper first shows that the network parameters are more sensitive to the speech quality than the alignments and thus this stage requires improvement. Then, various front-end robustness approaches to addressing this problem are categorised based on functionality. The degree to which each class of approaches impacts the performance of DNN-based acoustic models is examined experimentally. Based on the results, a front-end processing pipeline is proposed for efficiently combining different classes of approaches. Using this front-end, the combined effects of different classes of approaches are further evaluated in a single distant microphone-based meeting transcription task with both speaker independent (SI) and speaker adaptive training (SAT) set-ups. By combining multiple speech enhancement results, multiple types of features, and feature transformation, the front-end shows relative performance gains of 7.24% and 9.83% in the SI and SAT scenarios, respectively, over competitive DNN-based systems using log mel-filter bank features.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.csl.2014.11.00

    Realistic sources, receivers and walls improve the generalisability of virtually-supervised blind acoustic parameter estimators

    Full text link
    Blind acoustic parameter estimation consists in inferring the acoustic properties of an environment from recordings of unknown sound sources. Recent works in this area have utilized deep neural networks trained either partially or exclusively on simulated data, due to the limited availability of real annotated measurements. In this paper, we study whether a model purely trained using a fast image-source room impulse response simulator can generalize to real data. We present an ablation study on carefully crafted simulated training sets that account for different levels of realism in source, receiver and wall responses. The extent of realism is controlled by the sampling of wall absorption coefficients and by applying measured directivity patterns to microphones and sources. A state-of-the-art model trained on these datasets is evaluated on the task of jointly estimating the room's volume, total surface area, and octave-band reverberation times from multiple, multichannel speech recordings. Results reveal that every added layer of simulation realism at train time significantly improves the estimation of all quantities on real signals

    Acoustic sensor network geometry calibration and applications

    Get PDF
    In the modern world, we are increasingly surrounded by computation devices with communication links and one or more microphones. Such devices are, for example, smartphones, tablets, laptops or hearing aids. These devices can work together as nodes in an acoustic sensor network (ASN). Such networks are a growing platform that opens the possibility for many practical applications. ASN based speech enhancement, source localization, and event detection can be applied for teleconferencing, camera control, automation, or assisted living. For this kind of applications, the awareness of auditory objects and their spatial positioning are key properties. In order to provide these two kinds of information, novel methods have been developed in this thesis. Information on the type of auditory objects is provided by a novel real-time sound classification method. Information on the position of human speakers is provided by a novel localization and tracking method. In order to localize with respect to the ASN, the relative arrangement of the sensor nodes has to be known. Therefore, different novel geometry calibration methods were developed. Sound classification The first method addresses the task of identification of auditory objects. A novel application of the bag-of-features (BoF) paradigm on acoustic event classification and detection was introduced. It can be used for event and speech detection as well as for speaker identification. The use of both mel frequency cepstral coefficient (MFCC) and Gammatone frequency cepstral coefficient (GFCC) features improves the classification accuracy. By using soft quantization and introducing supervised training for the BoF model, superior accuracy is achieved. The method generalizes well from limited training data. It is working online and can be computed in a fraction of real-time. By a dedicated training strategy based on a hierarchy of stationarity, the detection of speech in mixtures with noise was realized. This makes the method robust against severe noises levels corrupting the speech signal. Thus it is possible to provide control information to a beamformer in order to realize blind speech enhancement. A reliable improvement is achieved in the presence of one or more stationary noise sources. Speaker localization The localization method enables each node to determine the direction of arrival (DoA) of concurrent sound sources. The author's neuro-biologically inspired speaker localization method for microphone arrays was refined for the use in ASNs. By implementing a dedicated cochlear and midbrain model, it is robust against the reverberation found in indoor rooms. In order to better model the unknown number of concurrent speakers, an application of the EM algorithm that realizes probabilistic clustering according to auditory scene analysis (ASA) principles was introduced. Based on this approach, a system for Euclidean tracking in ASNs was designed. Each node applies the node wise localization method and shares probabilistic DoA estimates together with an estimate of the spectral distribution with the network. As this information is relatively sparse, it can be transmitted with low bandwidth. The system is robust against jitter and transmission errors. The information from all nodes is integrated according to spectral similarity to correctly associate concurrent speakers. By incorporating the intersection angle in the triangulation, the precision of the Euclidean localization is improved. Tracks of concurrent speakers are computed over time, as is shown with recordings in a reverberant room. Geometry calibration The central task of geometry calibration has been solved with special focus on sensor nodes equipped with multiple microphones. Novel methods were developed for different scenarios. An audio-visual method was introduced for the calibration of ASNs in video conferencing scenarios. The DoAs estimates are fused with visual speaker tracking in order to provide sensor positions in a common coordinate system. A novel acoustic calibration method determines the relative positioning of the nodes from ambient sounds alone. Unlike previous methods that only infer the positioning of distributed microphones, the DoA is incorporated and thus it becomes possible to calibrate the orientation of the nodes with a high accuracy. This is very important for all applications using the spatial information, as the triangulation error increases dramatically with bad orientation estimates. As speech events can be used, the calibration becomes possible without the requirement of playing dedicated calibration sounds. Based on this, an online method employing a genetic algorithm with incremental measurements was introduced. By using the robust speech localization method, the calibration is computed in parallel to the tracking. The online method is be able to calibrate ASNs in real time, as is shown with recordings of natural speakers in a reverberant room. The informed acoustic sensor network All new methods are important building blocks for the use of ASNs. The online methods for localization and calibration both make use of the neuro-biologically inspired processing in the nodes which leads to state-of-the-art results, even in reverberant enclosures. The high robustness and reliability can be improved even more by including the event detection method in order to exclude non-speech events. When all methods are combined, both semantic information on what is happening in the acoustic scene as well as spatial information on the positioning of the speakers and sensor nodes is automatically acquired in real time. This realizes truly informed audio processing in ASNs. Practical applicability is shown by application to recordings in reverberant rooms. The contribution of this thesis is thus not only to advance the state-of-the-art in automatically acquiring information on the acoustic scene, but also pushing the practical applicability of such methods
    corecore