673 research outputs found

    Flow-parametric regulation of shear-driven phase separation in two and three dimensions

    Full text link
    The Cahn-Hilliard equation with an externally-prescribed chaotic shear flow is studied in two and three dimensions. The main goal is to compare and contrast the phase separation in two and three dimensions, using high-resolution numerical simulation as the basis for the study. The model flow is parametrized by its amplitudes (thereby admitting the possibility of anisotropy), lengthscales, and multiple time scales, and the outcome of the phase separation is investigated as a function of these parameters as well as the dimensionality. In this way, a parameter regime is identified wherein the phase separation and the associated coarsening phenomenon are not only arrested but in fact the concentration variance decays, thereby opening up the possibility of describing the dynamics of the concentration field using the theories of advection diffusion. This parameter regime corresponds to long flow correlation times, large flow amplitudes and small diffusivities. The onset of this hyperdiffusive regime is interpreted by introducing Batchelor lengthscales. A key result is that in the hyperdiffusive regime, the distribution of concentration (in particular, the frequency of extreme values of concentration) depends strongly on the dimensionality. Anisotropic scenarios are also investigated: for scenarios wherein the variance saturates (corresponding to coarsening arrest), the direction in which the domains align depends on the flow correlation time. Thus, for correlation times comparable to the inverse of the mean shear rate, the domains align in the direction of maximum flow amplitude, while for short correlation times, the domains initially align in the opposite direction. However, at very late times (after the passage of thousands of correlation times), the fate of the domains is the same regardless of correlation time, namely alignment in the direction of maximum flow amplitude.Comment: 27 pages, 14 figure

    Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations

    Full text link
    Recent results in the literature provide computational evidence that stabilized semi-implicit time-stepping method can efficiently simulate phase field problems involving fourth-order nonlinear dif- fusion, with typical examples like the Cahn-Hilliard equation and the thin film type equation. The up-to-date theoretical explanation of the numerical stability relies on the assumption that the deriva- tive of the nonlinear potential function satisfies a Lipschitz type condition, which in a rigorous sense, implies the boundedness of the numerical solution. In this work we remove the Lipschitz assumption on the nonlinearity and prove unconditional energy stability for the stabilized semi-implicit time-stepping methods. It is shown that the size of stabilization term depends on the initial energy and the perturba- tion parameter but is independent of the time step. The corresponding error analysis is also established under minimal nonlinearity and regularity assumptions

    Phase-field simulation of core-annular pipe flow

    Full text link
    Phase-field methods have long been used to model the flow of immiscible fluids. Their ability to naturally capture interface topological changes is widely recognized, but their accuracy in simulating flows of real fluids in practical geometries is not established. We here quantitatively investigate the convergence of the phase-field method to the sharp-interface limit with simulations of two-phase pipe flow. We focus on core-annular flows, in which a highly viscous fluid is lubricated by a less viscous fluid, and validate our simulations with an analytic laminar solution, a formal linear stability analysis and also in the fully nonlinear regime. We demonstrate the ability of the phase-field method to accurately deal with non-rectangular geometry, strong advection, unsteady fluctuations and large viscosity contrast. We argue that phase-field methods are very promising for quantitatively studying moderately turbulent flows, especially at high concentrations of the disperse phase.Comment: Paper accepted for publication in International Journal of Multiphase Flo
    corecore