5,272 research outputs found

    A study of research trends and issues in wireless ad hoc networks

    Full text link
    Ad hoc network enables network creation on the fly without support of any predefined infrastructure. The spontaneous erection of networks in anytime and anywhere fashion enables development of various novel applications based on ad hoc networks. However, at the same ad hoc network presents several new challenges. Different research proposals have came forward to resolve these challenges. This chapter provides a survey of current issues, solutions and research trends in wireless ad hoc network. Even though various surveys are already available on the topic, rapid developments in recent years call for an updated account on this topic. The chapter has been organized as follows. In the first part of the chapter, various ad hoc network's issues arising at different layers of TCP/IP protocol stack are presented. An overview of research proposals to address each of these issues is also provided. The second part of the chapter investigates various emerging models of ad hoc networks, discusses their distinctive properties and highlights various research issues arising due to these properties. We specifically provide discussion on ad hoc grids, ad hoc clouds, wireless mesh networks and cognitive radio ad hoc networks. The chapter ends with presenting summary of the current research on ad hoc network, ignored research areas and directions for further research

    Data Management in Industry 4.0: State of the Art and Open Challenges

    Full text link
    Information and communication technologies are permeating all aspects of industrial and manufacturing systems, expediting the generation of large volumes of industrial data. This article surveys the recent literature on data management as it applies to networked industrial environments and identifies several open research challenges for the future. As a first step, we extract important data properties (volume, variety, traffic, criticality) and identify the corresponding data enabling technologies of diverse fundamental industrial use cases, based on practical applications. Secondly, we provide a detailed outline of recent industrial architectural designs with respect to their data management philosophy (data presence, data coordination, data computation) and the extent of their distributiveness. Then, we conduct a holistic survey of the recent literature from which we derive a taxonomy of the latest advances on industrial data enabling technologies and data centric services, spanning all the way from the field level deep in the physical deployments, up to the cloud and applications level. Finally, motivated by the rich conclusions of this critical analysis, we identify interesting open challenges for future research. The concepts presented in this article thematically cover the largest part of the industrial automation pyramid layers. Our approach is multidisciplinary, as the selected publications were drawn from two fields; the communications, networking and computation field as well as the industrial, manufacturing and automation field. The article can help the readers to deeply understand how data management is currently applied in networked industrial environments, and select interesting open research opportunities to pursue

    The Proceedings of First Work-in-Progress Session of The CSI International Symposium on Real-Time and Embedded Systems and Technologies

    Full text link
    The present volume contains the proceedings of RTEST WiP 2018, chaired by Marco Caccamo, University of Illinois at Urbana-Champaign. This event has been organized by the School of Electrical and Computer Engineering at the University of Tehran, in conjunction with the Department of Computer Engineering at Sharif University of Technology, Tehran, Iran. The topics of interest in RTEST WiP span over all theoretical and application-oriented aspects, reporting design, analysis, implementation, evaluation, and empirical results, of real-time and embedded systems, internet-of-things, and cyber-physical systems. The program committee of RTEST 2018 consists of 54 top researchers in the mentioned fields from top universities, industries, and research centers around the world. RTEST 2018 has received a total of 41 submissions, out of which we have accepted 14 regular papers and 4 work-in-progress papers. Each submission has been reviewed by 3 to 5 independent referees, for its quality, originality, contribution, clarity of presentation, and relevance to the symposium topics

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial

    Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    Full text link
    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.Comment: This manuscript is submitted to IEEE Communication Surveys and Tutorials for possible publicatio

    Wireless Network Design for Control Systems: A Survey

    Full text link
    Wireless networked control systems (WNCS) are composed of spatially distributed sensors, actuators, and con- trollers communicating through wireless networks instead of conventional point-to-point wired connections. Due to their main benefits in the reduction of deployment and maintenance costs, large flexibility and possible enhancement of safety, WNCS are becoming a fundamental infrastructure technology for critical control systems in automotive electrical systems, avionics control systems, building management systems, and industrial automation systems. The main challenge in WNCS is to jointly design the communication and control systems considering their tight interaction to improve the control performance and the network lifetime. In this survey, we make an exhaustive review of the literature on wireless network design and optimization for WNCS. First, we discuss what we call the critical interactive variables including sampling period, message delay, message dropout, and network energy consumption. The mutual effects of these communication and control variables motivate their joint tuning. We discuss the effect of controllable wireless network parameters at all layers of the communication protocols on the probability distribution of these interactive variables. We also review the current wireless network standardization for WNCS and their corresponding methodology for adapting the network parameters. Moreover, we discuss the analysis and design of control systems taking into account the effect of the interactive variables on the control system performance. Finally, we present the state-of-the-art wireless network design and optimization for WNCS, while highlighting the tradeoff between the achievable performance and complexity of various approaches. We conclude the survey by highlighting major research issues and identifying future research directions.Comment: 37 pages, 17 figures, 4 table

    All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey

    Full text link
    With the Internet of Things (IoT) becoming part of our daily life and our environment, we expect rapid growth in the number of connected devices. IoT is expected to connect billions of devices and humans to bring promising advantages for us. With this growth, fog computing, along with its related edge computing paradigms, such as multi-access edge computing (MEC) and cloudlet, are seen as promising solutions for handling the large volume of security-critical and time-sensitive data that is being produced by the IoT. In this paper, we first provide a tutorial on fog computing and its related computing paradigms, including their similarities and differences. Next, we provide a taxonomy of research topics in fog computing, and through a comprehensive survey, we summarize and categorize the efforts on fog computing and its related computing paradigms. Finally, we provide challenges and future directions for research in fog computing.Comment: 48 pages, 7 tables, 11 figures, 450 references. The data (categories and features/objectives of the papers) of this survey are now available publicly. Accepted by Elsevier Journal of Systems Architectur

    MAC Protocols for Terahertz Communication: A Comprehensive Survey

    Full text link
    Terahertz communication is emerging as a future technology to support Terabits per second link with highlighting features as high throughput and negligible latency. However, the unique features of the Terahertz band such as high path loss, scattering and reflection pose new challenges and results in short communication distance. The antenna directionality, in turn, is required to enhance the communication distance and to overcome the high path loss. However, these features in combine negate the use of traditional Medium access protocols. Therefore novel MAC protocol designs are required to fully exploit their potential benefits including efficient channel access, control message exchange, link establishment, mobility management, and line-of-sight blockage mitigation. An in-depth survey of Terahertz MAC protocols is presented in this paper. The paper highlights the key features of the Terahertz band which should be considered while designing an efficient Terahertz MAC protocol, and the decisions which if taken at Terahertz MAC layer can enhance the network performance. Different Terahertz applications at macro and nano scales are highlighted with design requirements for their MAC protocols. The MAC protocol design issues and considerations are highlighted. Further, the existing MAC protocols are also classified based on network topology, channel access mechanisms, and link establishment strategies as Transmitter and Receiver initiated communication. The open challenges and future research directions on Terahertz MAC protocols are also highlighted.Comment: Submitted to IEEE Communication Surveys and Tutorials Journa

    Reconfigurable Wireless Networks

    Full text link
    Driven by the advent of sophisticated and ubiquitous applications, and the ever-growing need for information, wireless networks are without a doubt steadily evolving into profoundly more complex and dynamic systems. The user demands are progressively rampant, while application requirements continue to expand in both range and diversity. Future wireless networks, therefore, must be equipped with the ability to handle numerous, albeit challenging requirements. Network reconfiguration, considered as a prominent network paradigm, is envisioned to play a key role in leveraging future network performance and considerably advancing current user experiences. This paper presents a comprehensive overview of reconfigurable wireless networks and an in-depth analysis of reconfiguration at all layers of the protocol stack. Such networks characteristically possess the ability to reconfigure and adapt their hardware and software components and architectures, thus enabling flexible delivery of broad services, as well as sustaining robust operation under highly dynamic conditions. The paper offers a unifying framework for research in reconfigurable wireless networks. This should provide the reader with a holistic view of concepts, methods, and strategies in reconfigurable wireless networks. Focus is given to reconfigurable systems in relatively new and emerging research areas such as cognitive radio networks, cross-layer reconfiguration and software-defined networks. In addition, modern networks have to be intelligent and capable of self-organization. Thus, this paper discusses the concept of network intelligence as a means to enable reconfiguration in highly complex and dynamic networks. Finally, the paper is supported with several examples and case studies showing the tremendous impact of reconfiguration on wireless networks.Comment: 28 pages, 26 figures; Submitted to the Proceedings of the IEEE (a special issue on Reconfigurable Systems
    • …
    corecore