165 research outputs found

    Homological spanning forest framework for 2D image analysis

    Get PDF
    A 2D topology-based digital image processing framework is presented here. This framework consists of the computation of a flexible geometric graph-based structure, starting from a raster representation of a digital image I. This structure is called Homological Spanning Forest (HSF for short), and it is built on a cell complex associated to I. The HSF framework allows an efficient and accurate topological analysis of regions of interest (ROIs) by using a four-level architecture. By topological analysis, we mean not only the computation of Euler characteristic, genus or Betti numbers, but also advanced computational algebraic topological information derived from homological classification of cycles. An initial HSF representation can be modified to obtain a different one, in which ROIs are almost isolated and ready to be topologically analyzed. The HSF framework is susceptible of being parallelized and generalized to higher dimensions

    Homological Spanning Forests for Discrete Objects

    Get PDF
    Computing and representing topological information form an important part in many applications such as image representation and compression, classification, pattern recognition, geometric modelling, etc. The homology of digital objects is an algebraic notion that provides a concise description of their topology in terms of connected components, tunnels and cavities. The purpose of this work is to develop a theoretical and practical frame- work for efficiently extracting and exploiting useful homological information in the context of nD digital images. To achieve this goal, we intend to combine known techniques in algebraic topology, and image processing. The main notion created for this purpose consists of a combinatorial representation called Homological Spanning Forest (or HSF, for short) of a digital object or a digital image. This new model is composed of a set of directed forests, which can be constructed under an underlying cell complex format of the image. HSF’s are based on the algebraic concept of chain homotopies and they can be considered as a suitable generalization to higher dimensional cell complexes of the topological meaning of a spanning tree of a geometric graph. Based on the HSF representation, we present here a 2D homology-based framework for sequential and parallel digital image processing.Premio Extraordinario de Doctorado U

    Algebraic topological analysis of time-sequence of digital images

    Get PDF
    This paper introduces an algebraic framework for a topological analysis of time-varying 2D digital binary–valued images, each of them defined as 2D arrays of pixels. Our answer is based on an algebraic-topological coding, called AT–model, for a nD (n=2,3) digital binary-valued image I consisting simply in taking I together with an algebraic object depending on it. Considering AT–models for all the 2D digital images in a time sequence, it is possible to get an AT–model for the 3D digital image consisting in concatenating the successive 2D digital images in the sequence. If the frames are represented in a quadtree format, a similar positive result can be derived

    Polynomiality of surface braid and mapping class group representations

    Full text link
    We study a wide range of homologically-defined representations of surface braid groups and of mapping class groups of surfaces, extending the Lawrence-Bigelow representations of the classical braid groups. These representations naturally come in families, defined either on all surface braid groups as the number of strands varies or on all mapping class groups as the genus varies. We prove that each of these families of representations is polynomial. This has applications to twisted homological stability as well as to understanding the structure of the representation theory of these families of groups. Our polynomiality result is a consequence of a more fundamental result establishing relations amongst the families of representations that we consider via short exact sequences of functors. As well as polynomiality, these short exact sequences also have applications to understanding the kernels of the homological representations under consideration.Comment: 47 pages, 12 figures. The exposition has been reorganised and streamlined in v2. Comments welcome
    corecore