196,920 research outputs found

    Single-Channel Speech Enhancement with Deep Complex U-Networks and Probabilistic Latent Space Models

    Full text link
    In this paper, we propose to extend the deep, complex U-Network architecture for speech enhancement by incorporating a probabilistic (i.e., variational) latent space model. The proposed model is evaluated against several ablated versions of itself in order to study the effects of the variational latent space model, complex-value processing, and self-attention. Evaluation on the MS-DNS 2020 and Voicebank+Demand datasets yields consistently high performance. E.g., the proposed model achieves an SI-SDR of up to 20.2 dB, about 0.5 to 1.4 dB higher than its ablated version without probabilistic latent space, 2-2.4 dB higher than WaveUNet, and 6.7 dB above PHASEN. Compared to real-valued magnitude spectrogram processing with a variational U-Net, the complex U-Net achieves an improvement of up to 4.5 dB SI-SDR. Complex spectrum encoding as magnitude and phase yields best performance in anechoic conditions whereas real and imaginary part representation results in better generalization to (novel) reverberation conditions, possibly due to the underlying physics of sound

    Goal-Directed Planning for Habituated Agents by Active Inference Using a Variational Recurrent Neural Network

    Get PDF
    It is crucial to ask how agents can achieve goals by generating action plans using only partial models of the world acquired through habituated sensory-motor experiences. Although many existing robotics studies use a forward model framework, there are generalization issues with high degrees of freedom. The current study shows that the predictive coding (PC) and active inference (AIF) frameworks, which employ a generative model, can develop better generalization by learning a prior distribution in a low dimensional latent state space representing probabilistic structures extracted from well habituated sensory-motor trajectories. In our proposed model, learning is carried out by inferring optimal latent variables as well as synaptic weights for maximizing the evidence lower bound, while goal-directed planning is accomplished by inferring latent variables for maximizing the estimated lower bound. Our proposed model was evaluated with both simple and complex robotic tasks in simulation, which demonstrated sufficient generalization in learning with limited training data by setting an intermediate value for a regularization coefficient. Furthermore, comparative simulation results show that the proposed model outperforms a conventional forward model in goal-directed planning, due to the learned prior confining the search of motor plans within the range of habituated trajectories.Comment: 30 pages, 19 figure
    corecore