2 research outputs found

    Higher-order port-graph rewriting

    Full text link
    The biologically inspired framework of port-graphs has been successfully used to specify complex systems. It is the basis of the PORGY modelling tool. To facilitate the specification of proof normalisation procedures via graph rewriting, in this paper we add higher-order features to the original port-graph syntax, along with a generalised notion of graph morphism. We provide a matching algorithm which enables to implement higher-order port-graph rewriting in PORGY, thus one can visually study the dynamics of the systems modelled. We illustrate the expressive power of higher-order port-graphs with examples taken from proof-net reduction systems.Comment: In Proceedings LINEARITY 2012, arXiv:1211.348

    A Higher-Order Calculus for Graph Transformation

    Get PDF
    This paper presents a formalism for defining higher-order systems based on the notion of graph transformation (by rewriting or interaction). The syntax is inspired by the Combinatory Reduction Systems of Klop. The rewrite rules can be used to define first-order systems, such as graph or term-graph rewriting systems, Lafont's interaction nets, the interaction systems of Asperti and Laneve, the non-deterministic nets of Alexiev, or a process calculus. They can also be used to specify higher-order systems such as hierarchical graphs and proof nets of Linear Logic, or to specify the operational semantics of graph-based languages.(undefined
    corecore