11,683 research outputs found

    Learning Student Networks via Feature Embedding

    Full text link
    Deep convolutional neural networks have been widely used in numerous applications, but their demanding storage and computational resource requirements prevent their applications on mobile devices. Knowledge distillation aims to optimize a portable student network by taking the knowledge from a well-trained heavy teacher network. Traditional teacher-student based methods used to rely on additional fully-connected layers to bridge intermediate layers of teacher and student networks, which brings in a large number of auxiliary parameters. In contrast, this paper aims to propagate information from teacher to student without introducing new variables which need to be optimized. We regard the teacher-student paradigm from a new perspective of feature embedding. By introducing the locality preserving loss, the student network is encouraged to generate the low-dimensional features which could inherit intrinsic properties of their corresponding high-dimensional features from teacher network. The resulting portable network thus can naturally maintain the performance as that of the teacher network. Theoretical analysis is provided to justify the lower computation complexity of the proposed method. Experiments on benchmark datasets and well-trained networks suggest that the proposed algorithm is superior to state-of-the-art teacher-student learning methods in terms of computational and storage complexity

    Dynamic Convolutions: Exploiting Spatial Sparsity for Faster Inference

    Full text link
    Modern convolutional neural networks apply the same operations on every pixel in an image. However, not all image regions are equally important. To address this inefficiency, we propose a method to dynamically apply convolutions conditioned on the input image. We introduce a residual block where a small gating branch learns which spatial positions should be evaluated. These discrete gating decisions are trained end-to-end using the Gumbel-Softmax trick, in combination with a sparsity criterion. Our experiments on CIFAR, ImageNet and MPII show that our method has better focus on the region of interest and better accuracy than existing methods, at a lower computational complexity. Moreover, we provide an efficient CUDA implementation of our dynamic convolutions using a gather-scatter approach, achieving a significant improvement in inference speed with MobileNetV2 residual blocks. On human pose estimation, a task that is inherently spatially sparse, the processing speed is increased by 60% with no loss in accuracy.Comment: CVPR 2020 (poster) https://github.com/thomasverelst/dyncon

    Dual Path Networks

    Full text link
    In this work, we present a simple, highly efficient and modularized Dual Path Network (DPN) for image classification which presents a new topology of connection paths internally. By revealing the equivalence of the state-of-the-art Residual Network (ResNet) and Densely Convolutional Network (DenseNet) within the HORNN framework, we find that ResNet enables feature re-usage while DenseNet enables new features exploration which are both important for learning good representations. To enjoy the benefits from both path topologies, our proposed Dual Path Network shares common features while maintaining the flexibility to explore new features through dual path architectures. Extensive experiments on three benchmark datasets, ImagNet-1k, Places365 and PASCAL VOC, clearly demonstrate superior performance of the proposed DPN over state-of-the-arts. In particular, on the ImagNet-1k dataset, a shallow DPN surpasses the best ResNeXt-101(64x4d) with 26% smaller model size, 25% less computational cost and 8% lower memory consumption, and a deeper DPN (DPN-131) further pushes the state-of-the-art single model performance with about 2 times faster training speed. Experiments on the Places365 large-scale scene dataset, PASCAL VOC detection dataset, and PASCAL VOC segmentation dataset also demonstrate its consistently better performance than DenseNet, ResNet and the latest ResNeXt model over various applications.Comment: for code and models, see https://github.com/cypw/DPN

    PILAE: A Non-gradient Descent Learning Scheme for Deep Feedforward Neural Networks

    Full text link
    In this work, a non-gradient descent learning scheme is proposed for deep feedforward neural networks (DNN). As we known, autoencoder can be used as the building blocks of the multi-layer perceptron (MLP) deep neural network. So, the MLP will be taken as an example to illustrate the proposed scheme of pseudoinverse learning algorithm for autoencoder (PILAE) training. The PILAE with low rank approximation is a non-gradient based learning algorithm, and the encoder weight matrix is set to be the low rank approximation of the pseudoinverse of the input matrix, while the decoder weight matrix is calculated by the pseudoinverse learning algorithm. It is worth to note that only few network structure hyperparameters need to be tuned. Hence, the proposed algorithm can be regarded as a quasi-automated training algorithm which can be utilized in autonomous machine learning research field. The experimental results show that the proposed learning scheme for DNN can achieve better performance on considering the tradeoff between training efficiency and classification accuracy.Comment: This work is our effort toward to realize AutoM

    Doing the impossible: Why neural networks can be trained at all

    Full text link
    As deep neural networks grow in size, from thousands to millions to billions of weights, the performance of those networks becomes limited by our ability to accurately train them. A common naive question arises: if we have a system with billions of degrees of freedom, don't we also need billions of samples to train it? Of course, the success of deep learning indicates that reliable models can be learned with reasonable amounts of data. Similar questions arise in protein folding, spin glasses and biological neural networks. With effectively infinite potential folding/spin/wiring configurations, how does the system find the precise arrangement that leads to useful and robust results? Simple sampling of the possible configurations until an optimal one is reached is not a viable option even if one waited for the age of the universe. On the contrary, there appears to be a mechanism in the above phenomena that forces them to achieve configurations that live on a low-dimensional manifold, avoiding the curse of dimensionality. In the current work we use the concept of mutual information between successive layers of a deep neural network to elucidate this mechanism and suggest possible ways of exploiting it to accelerate training. We show that adding structure to the neural network that enforces higher mutual information between layers speeds training and leads to more accurate results. High mutual information between layers implies that the effective number of free parameters is exponentially smaller than the raw number of tunable weights.Comment: The material is based on a poster from the 15th Neural Computation and Psychology Workshop "Contemporary Neural Network Models: Machine Learning, Artificial Intelligence, and Cognition" August 8-9, 2016, Drexel University, Philadelphia, PA, US

    Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning

    Full text link
    The ability to act in multiple environments and transfer previous knowledge to new situations can be considered a critical aspect of any intelligent agent. Towards this goal, we define a novel method of multitask and transfer learning that enables an autonomous agent to learn how to behave in multiple tasks simultaneously, and then generalize its knowledge to new domains. This method, termed "Actor-Mimic", exploits the use of deep reinforcement learning and model compression techniques to train a single policy network that learns how to act in a set of distinct tasks by using the guidance of several expert teachers. We then show that the representations learnt by the deep policy network are capable of generalizing to new tasks with no prior expert guidance, speeding up learning in novel environments. Although our method can in general be applied to a wide range of problems, we use Atari games as a testing environment to demonstrate these methods.Comment: Accepted as a conference paper at ICLR 201

    Integrating kinematics and environment context into deep inverse reinforcement learning for predicting off-road vehicle trajectories

    Full text link
    Predicting the motion of a mobile agent from a third-person perspective is an important component for many robotics applications, such as autonomous navigation and tracking. With accurate motion prediction of other agents, robots can plan for more intelligent behaviors to achieve specified objectives, instead of acting in a purely reactive way. Previous work addresses motion prediction by either only filtering kinematics, or using hand-designed and learned representations of the environment. Instead of separating kinematic and environmental context, we propose a novel approach to integrate both into an inverse reinforcement learning (IRL) framework for trajectory prediction. Instead of exponentially increasing the state-space complexity with kinematics, we propose a two-stage neural network architecture that considers motion and environment together to recover the reward function. The first-stage network learns feature representations of the environment using low-level LiDAR statistics and the second-stage network combines those learned features with kinematics data. We collected over 30 km of off-road driving data and validated experimentally that our method can effectively extract useful environmental and kinematic features. We generate accurate predictions of the distribution of future trajectories of the vehicle, encoding complex behaviors such as multi-modal distributions at road intersections, and even show different predictions at the same intersection depending on the vehicle's speed.Comment: CoRL 201

    Multi-Task Learning with High-Order Statistics for X-vector based Text-Independent Speaker Verification

    Full text link
    The x-vector based deep neural network (DNN) embedding systems have demonstrated effectiveness for text-independent speaker verification. This paper presents a multi-task learning architecture for training the speaker embedding DNN with the primary task of classifying the target speakers, and the auxiliary task of reconstructing the first- and higher-order statistics of the original input utterance. The proposed training strategy aggregates both the supervised and unsupervised learning into one framework to make the speaker embeddings more discriminative and robust. Experiments are carried out using the NIST SRE16 evaluation dataset and the VOiCES dataset. The results demonstrate that our proposed method outperforms the original x-vector approach with very low additional complexity added.Comment: 5 pages,2 figures, submitted to INTERSPEECH 201

    Multi-Level Recurrent Residual Networks for Action Recognition

    Full text link
    Most existing Convolutional Neural Networks(CNNs) used for action recognition are either difficult to optimize or underuse crucial temporal information. Inspired by the fact that the recurrent model consistently makes breakthroughs in the task related to sequence, we propose a novel Multi-Level Recurrent Residual Networks(MRRN) which incorporates three recognition streams. Each stream consists of a Residual Networks(ResNets) and a recurrent model. The proposed model captures spatiotemporal information by employing both alternative ResNets to learn spatial representations from static frames and stacked Simple Recurrent Units(SRUs) to model temporal dynamics. Three distinct-level streams learned low-, mid-, high-level representations independently are fused by computing a weighted average of their softmax scores to obtain the complementary representations of the video. Unlike previous models which boost performance at the cost of time complexity and space complexity, our models have a lower complexity by employing shortcut connection and are trained end-to-end with greater efficiency. MRRN displays significant performance improvements compared to CNN-RNN framework baselines and obtains comparable performance with the state-of-the-art, achieving 51.3% on HMDB-51 dataset and 81.9% on UCF-101 dataset although no additional data

    Fast and Accurate Person Re-Identification with RMNet

    Full text link
    In this paper we introduce a new neural network architecture designed to use in embedded vision applications. It merges the best working practices of network architectures like MobileNets and ResNets to our named RMNet architecture. We also focus on key moments of building mobile architectures to carry out in the limited computation budget. Additionally, to demonstrate the effectiveness of our architecture we evaluate the RMNet backbone on Person Re-identification task. The proposed approach is in top 3 of state of the art solutions on Market-1501 challenge, however our method significantly outperforms them by the inference speed
    • …
    corecore