197 research outputs found

    Learning to infer: RL-based search for DNN primitive selection on Heterogeneous Embedded Systems

    Full text link
    Deep Learning is increasingly being adopted by industry for computer vision applications running on embedded devices. While Convolutional Neural Networks' accuracy has achieved a mature and remarkable state, inference latency and throughput are a major concern especially when targeting low-cost and low-power embedded platforms. CNNs' inference latency may become a bottleneck for Deep Learning adoption by industry, as it is a crucial specification for many real-time processes. Furthermore, deployment of CNNs across heterogeneous platforms presents major compatibility issues due to vendor-specific technology and acceleration libraries. In this work, we present QS-DNN, a fully automatic search based on Reinforcement Learning which, combined with an inference engine optimizer, efficiently explores through the design space and empirically finds the optimal combinations of libraries and primitives to speed up the inference of CNNs on heterogeneous embedded devices. We show that, an optimized combination can achieve 45x speedup in inference latency on CPU compared to a dependency-free baseline and 2x on average on GPGPU compared to the best vendor library. Further, we demonstrate that, the quality of results and time "to-solution" is much better than with Random Search and achieves up to 15x better results for a short-time search

    An Application-Specific VLIW Processor with Vector Instruction Set for CNN Acceleration

    Full text link
    In recent years, neural networks have surpassed classical algorithms in areas such as object recognition, e.g. in the well-known ImageNet challenge. As a result, great effort is being put into developing fast and efficient accelerators, especially for Convolutional Neural Networks (CNNs). In this work we present ConvAix, a fully C-programmable processor, which -- contrary to many existing architectures -- does not rely on a hard-wired array of multiply-and-accumulate (MAC) units. Instead it maps computations onto independent vector lanes making use of a carefully designed vector instruction set. The presented processor is targeted towards latency-sensitive applications and is capable of executing up to 192 MAC operations per cycle. ConvAix operates at a target clock frequency of 400 MHz in 28nm CMOS, thereby offering state-of-the-art performance with proper flexibility within its target domain. Simulation results for several 2D convolutional layers from well known CNNs (AlexNet, VGG-16) show an average ALU utilization of 72.5% using vector instructions with 16 bit fixed-point arithmetic. Compared to other well-known designs which are less flexible, ConvAix offers competitive energy efficiency of up to 497 GOP/s/W while even surpassing them in terms of area efficiency and processing speed.Comment: Accepted for publication in the proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS

    ReBNet: Residual Binarized Neural Network

    Full text link
    This paper proposes ReBNet, an end-to-end framework for training reconfigurable binary neural networks on software and developing efficient accelerators for execution on FPGA. Binary neural networks offer an intriguing opportunity for deploying large-scale deep learning models on resource-constrained devices. Binarization reduces the memory footprint and replaces the power-hungry matrix-multiplication with light-weight XnorPopcount operations. However, binary networks suffer from a degraded accuracy compared to their fixed-point counterparts. We show that the state-of-the-art methods for optimizing binary networks accuracy, significantly increase the implementation cost and complexity. To compensate for the degraded accuracy while adhering to the simplicity of binary networks, we devise the first reconfigurable scheme that can adjust the classification accuracy based on the application. Our proposition improves the classification accuracy by representing features with multiple levels of residual binarization. Unlike previous methods, our approach does not exacerbate the area cost of the hardware accelerator. Instead, it provides a tradeoff between throughput and accuracy while the area overhead of multi-level binarization is negligible.Comment: To Appear In The 26th IEEE International Symposium on Field-Programmable Custom Computing Machine
    • …
    corecore