160,178 research outputs found

    Depth from Monocular Images using a Semi-Parallel Deep Neural Network (SPDNN) Hybrid Architecture

    Get PDF
    Deep neural networks are applied to a wide range of problems in recent years. In this work, Convolutional Neural Network (CNN) is applied to the problem of determining the depth from a single camera image (monocular depth). Eight different networks are designed to perform depth estimation, each of them suitable for a feature level. Networks with different pooling sizes determine different feature levels. After designing a set of networks, these models may be combined into a single network topology using graph optimization techniques. This "Semi Parallel Deep Neural Network (SPDNN)" eliminates duplicated common network layers, and can be further optimized by retraining to achieve an improved model compared to the individual topologies. In this study, four SPDNN models are trained and have been evaluated at 2 stages on the KITTI dataset. The ground truth images in the first part of the experiment are provided by the benchmark, and for the second part, the ground truth images are the depth map results from applying a state-of-the-art stereo matching method. The results of this evaluation demonstrate that using post-processing techniques to refine the target of the network increases the accuracy of depth estimation on individual mono images. The second evaluation shows that using segmentation data alongside the original data as the input can improve the depth estimation results to a point where performance is comparable with stereo depth estimation. The computational time is also discussed in this study.Comment: 44 pages, 25 figure

    Learning sparse representations of depth

    Full text link
    This paper introduces a new method for learning and inferring sparse representations of depth (disparity) maps. The proposed algorithm relaxes the usual assumption of the stationary noise model in sparse coding. This enables learning from data corrupted with spatially varying noise or uncertainty, typically obtained by laser range scanners or structured light depth cameras. Sparse representations are learned from the Middlebury database disparity maps and then exploited in a two-layer graphical model for inferring depth from stereo, by including a sparsity prior on the learned features. Since they capture higher-order dependencies in the depth structure, these priors can complement smoothness priors commonly used in depth inference based on Markov Random Field (MRF) models. Inference on the proposed graph is achieved using an alternating iterative optimization technique, where the first layer is solved using an existing MRF-based stereo matching algorithm, then held fixed as the second layer is solved using the proposed non-stationary sparse coding algorithm. This leads to a general method for improving solutions of state of the art MRF-based depth estimation algorithms. Our experimental results first show that depth inference using learned representations leads to state of the art denoising of depth maps obtained from laser range scanners and a time of flight camera. Furthermore, we show that adding sparse priors improves the results of two depth estimation methods: the classical graph cut algorithm by Boykov et al. and the more recent algorithm of Woodford et al.Comment: 12 page

    Increasing the Efficiency of 6-DoF Visual Localization Using Multi-Modal Sensory Data

    Full text link
    Localization is a key requirement for mobile robot autonomy and human-robot interaction. Vision-based localization is accurate and flexible, however, it incurs a high computational burden which limits its application on many resource-constrained platforms. In this paper, we address the problem of performing real-time localization in large-scale 3D point cloud maps of ever-growing size. While most systems using multi-modal information reduce localization time by employing side-channel information in a coarse manner (eg. WiFi for a rough prior position estimate), we propose to inter-weave the map with rich sensory data. This multi-modal approach achieves two key goals simultaneously. First, it enables us to harness additional sensory data to localise against a map covering a vast area in real-time; and secondly, it also allows us to roughly localise devices which are not equipped with a camera. The key to our approach is a localization policy based on a sequential Monte Carlo estimator. The localiser uses this policy to attempt point-matching only in nodes where it is likely to succeed, significantly increasing the efficiency of the localization process. The proposed multi-modal localization system is evaluated extensively in a large museum building. The results show that our multi-modal approach not only increases the localization accuracy but significantly reduces computational time.Comment: Presented at IEEE-RAS International Conference on Humanoid Robots (Humanoids) 201

    Keyframe-based monocular SLAM: design, survey, and future directions

    Get PDF
    Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframe-based monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery

    Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable

    Full text link
    There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the optimizations and techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph-Based Benchmark Suite (GBBS).Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201
    • …
    corecore