501 research outputs found

    Preamble-Based Channel Estimation for CP-OFDM and OFDM/OQAM Systems: A Comparative Study

    Full text link
    In this paper, preamble-based least squares (LS) channel estimation in OFDM systems of the QAM and offset QAM (OQAM) types is considered, in both the frequency and the time domains. The construction of optimal (in the mean squared error (MSE) sense) preambles is investigated, for both the cases of full (all tones carrying pilot symbols) and sparse (a subset of pilot tones, surrounded by nulls or data) preambles. The two OFDM systems are compared for the same transmit power, which, for cyclic prefix (CP) based OFDM/QAM, also includes the power spent for CP transmission. OFDM/OQAM, with a sparse preamble consisting of equipowered and equispaced pilots embedded in zeros, turns out to perform at least as well as CP-OFDM. Simulations results are presented that verify the analysis

    Periodogram-based carrier frequency offset estimation for orthogonal frequency division multiplexing applications

    Get PDF
    In this paper, a novel carrier frequency offset (CFO) estimation algorithm is proposed for OFDM applications. The maximum likelihood estimator (MLE) for the CFO is derived, which reveals the relationship between the CFO and the periodogram of the received signal. Theoretical analysis shows that the proposed MLE is statistically efficient. To realize this MLE in practice, a sub-optimal estimator is also introduced in which zero-padded FFT is invoked for implementation. For the objectives of reducing the implementation complexity and broadening the estimation range, a preamble structure comprising nonuniformly-spaced pilot tones is presented. Based on this preamble, the CFO estimation is split into two phases: the coarse estimation is obtained through the correlation between the received spectrum and the original pattern of the preamble; whereas the fine estimation is obtained by comparing the relative magnitude attenuation in the vicinities of those CFO-shifted pilot tones. Both analytical investigations and computer simulations indicate that the accuracy of this simplified sub-optimal estimator is proportional to the oversize ratio of zero-padded FFT, and its estimation range is equal to the bandwidth of OFDM signal. When the oversize ratio is sufficiently high, the performance of the proposed sub-optimal estimator approaches that of the proposed MLE.published_or_final_versio

    Bayesian CFO estimation in OFDM systems

    Get PDF
    This paper addresses the problem of carrier frequency offset (CFO) estimation in orthogonal frequency division multiplexing (OFDM) systems using Bayesian method. Depending on the availability of the noise variance, two general CFO estimators are derived. Furthermore, the two general maximum a posteriori (MAP) estimators are developed into several special cases based on different degrees of prior information on parameters. The relationships between the proposed estimators and existing estimators are comprehensively investigated. Finally, numerical results demonstrate the effects of employing different prior information on the estimation performances. © 2009 IEEE.published_or_final_versionThe IEEE Conference on Wireless Communications and Networking (WCNC 2009), Budapest, Hungary, 5-8 April 2009. In Proceedings of IEEE WCNC, 2009, p. 1-

    Scattered Pilots and Virtual Carriers Based Frequency Offset Tracking for OFDM Systems: Algorithms, Identifiability, and Performance Analysis

    Get PDF
    In this paper, we propose a novel carrier frequency offset (CFO) tracking algorithm for orthogonal frequency division multiplexing (OFDM) systems by exploiting scattered pilot carriers and virtual carriers embedded in the existing OFDM standards. Assuming that the channel remains constant during two consecutive OFDM blocks and perfect timing, a CFO tracking algorithm is proposed using the limited number of pilot carriers in each OFDM block. Identifiability of this pilot based algorithm is fully discussed under the noise free environment, and a constellation rotation strategy is proposed to eliminate the c-ambiguity for arbitrary constellations. A weighted algorithm is then proposed by considering both scattered pilots and virtual carriers. We find that, the pilots increase the performance accuracy of the algorithm, while the virtual carriers reduce the chance of CFO outlier. Therefore, the proposed tracking algorithm is able to achieve full range CFO estimation, can be used before channel estimation, and could provide improved performance compared to existing algorithms. The asymptotic mean square error (MSE) of the proposed algorithm is derived and simulation results agree with the theoretical analysis

    Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)

    Get PDF
    This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given
    • …
    corecore