646 research outputs found

    Vector-based Efficient Data Hiding in Encrypted Images via Multi-MSB Replacement

    Full text link
    As an essential technique for data privacy protection, reversible data hiding in encrypted images (RDHEI) methods have drawn intensive research interest in recent years. In response to the increasing demand for protecting data privacy, novel methods that perform RDHEI are continually being developed. We propose two effective multi-MSB (most significant bit) replacement-based approaches that yield comparably high data embedding capacity, improve overall processing speed, and enhance reconstructed images' quality. Our first method, Efficient Multi-MSB Replacement-RDHEI (EMR-RDHEI), obtains higher data embedding rates (DERs, also known as payloads) and better visual quality in reconstructed images when compared with many other state-of-the-art methods. Our second method, Lossless Multi-MSB Replacement-RDHEI (LMR-RDHEI), can losslessly recover original images after an information embedding process is performed. To verify the accuracy of our methods, we compared them with other recent RDHEI techniques and performed extensive experiments using the widely accepted BOWS-2 dataset. Our experimental results showed that the DER of our EMR-RDHEI method ranged from 1.2087 bit per pixel (bpp) to 6.2682 bpp with an average of 3.2457 bpp. For the LMR-RDHEI method, the average DER was 2.5325 bpp, with a range between 0.2129 bpp and 6.0168 bpp. Our results demonstrate that these methods outperform many other state-of-the-art RDHEI algorithms. Additionally, the multi-MSB replacement-based approach provides a clean design and efficient vectorized implementation.Comment: 14 pages; journa

    A Survey on Reversible Image Data Hiding Using the Hierarchical Block Embedding Technique

    Get PDF
    The use of graphics for data concealment has significantly advanced the fields of secure communication and identity verification. Reversible data hiding (RDH) involves hiding data within host media, such as images, while allowing for the recovery of the original cover. Various RDH approaches have been developed, including difference expansion, interpolation techniques, prediction, and histogram modification. However, these methods were primarily applied to plain photos. This study introduces a novel reversible image transformation technique called Block Hierarchical Substitution (BHS). BHS enhances the quality of encrypted images and enables lossless restoration of the secret image with a low Peak Signal-to-Noise Ratio (PSNR). The cover image is divided into non-overlapping blocks, and the pixel values within each block are encrypted using the modulo function. This ensures that the linear prediction difference in the block remains consistent before and after encryption, enabling independent data extraction without picture decryption. In order to address the challenges associated with secure multimedia data processing, such as data encryption during transmission and storage, this survey investigates the specific issues related to reversible data hiding in encrypted images (RDHEI). Our proposed solution aims to enhance security (low Mean Squared Error) and improve the PSNR value by applying the method to encrypted images

    An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding in Encrypted Images

    Get PDF
    International audienceReversible data hiding in encrypted images (RDHEI) is an effective technique to embed data in the encrypted domain. An original image is encrypted with a secret key and during or after its transmission, it is possible to embed additional information in the encrypted image, without knowing the encryp-tion key or the original content of the image. During the decoding process, the secret message can be extracted and the original image can be reconstructed. In the last few years, RDHEI has started to draw research interest. Indeed, with the development of cloud computing, data privacy has become a real issue. However, none of the existing methods allow us to hide a large amount of information in a reversible manner. In this paper, we propose a new reversible method based on MSB (most significant bit) prediction with a very high capacity. We present two approaches, these are: high capacity reversible data hiding approach with correction of prediction errors and high capacity reversible data hiding approach with embedded prediction errors. With this method, regardless of the approach used, our results are better than those obtained with current state of the art methods, both in terms of reconstructed image quality and embedding capacity

    A Multistage High Capacity Reversible Data Hiding Technique Without Overhead Communication

    Get PDF
    Reversible Data Hiding(RDH) has been extensively investigated, recently, due to its numerous applications in the field of defence, medical, law enforcement and image authentication. However, most of RDH techniques suffer from low secret data hiding capacity and communication overhead. For this, multistage high-capacity reversible data hiding technique without overhead is proposed in this manuscript. Proposed reversible data hiding approach exploits histogram peaks for embedding the secret data along with overhead bits both in plain and encrypted domain. First, marked image is obtained by embedding secret data in the plain domain which is further processed using affine cipher maintaining correlation among the pixels. In second stage, overhead bits are embedded in the encrypted marked image. High embedding capacity is achieved through exploiting histogram peak for embedding multiple bits of secret data. Proposed approach is experimentally validated on different datasets and results are compared with the state-of-the-art techniques over different images

    Reversible Data Hiding in Encrypted Images Using MSBs Integration and Histogram Modification

    Full text link
    This paper presents a reversible data hiding in encrypted image that employs based notions of the RDH in plain-image schemes including histogram modification and prediction-error computation. In the proposed method, original image may be encrypted by desire encryption algorithm. Most significant bit (MSB) of encrypted pixels are integrated to vacate room for embedding data bits. Integrated ones will be more resistant against failure of reconstruction if they are modified for embedding data bits. At the recipient, we employ chess-board predictor for lossless reconstruction of the original image by the aim of prediction-error analysis. Comparing to existent RDHEI algorithms, not only we propose a separable method to extract data bits, but also content-owner may attain a perfect reconstruction of the original image without having data hider key. Experimental results confirm that the proposed algorithm outperforms state of the art ones

    An Efficient Data Security System Using Reserve Room Approach on Digital Images for Secret Sharing

    Get PDF
    This paper presents enhancement of d ata protection system for secret communication through common network based on reversible data concealment in encrypted images with reserve room approach. In this paper was implemented for true color RGB image and reserve room approach under multi scale decomposition. The Blue plane will be chosen for hiding the secret text data. Then image is then separated into number of blocks locally and lifting wavelet will be used to detect approximation and detailed coefficients. Then approximation part is encrypted using chaos encryption method. The proposed encryption technique uses the key to encrypt an image and not only enhances the safety of secret carrier informa tion by making the information inaccessible to any intruder having a random method. After image encryption, the data hide r will conceal the secret data into the detailed coefficients which are reserved before encryption. Although encryption achieves certain security effects, they make the secret messages unreadable and unnatural or meaningless. This system is still enhanced with encrypt messages using a symmetric key method. This is the reason a new security approach called reversible data hiding arises. It is the art of hiding the existence of data in another transmission medium to achieve secret communication. The data hidi ng technique uses the adaptive LSB replacement algorithm for concealing the secret message bits into the encrypted image. In the data extraction module, the secret data will be extracted by using relevant key for choosing the encrypted pixe ls to extract th e data. By using the decryption keys, the image and extracted text data will be extracted from encryption to get the original informatio n. Finally the performance of this proposal in encryption and data hiding will be analyzed based on image and data recovery
    corecore