498 research outputs found

    Map++: A Crowd-sensing System for Automatic Map Semantics Identification

    Full text link
    Digital maps have become a part of our daily life with a number of commercial and free map services. These services have still a huge potential for enhancement with rich semantic information to support a large class of mapping applications. In this paper, we present Map++, a system that leverages standard cell-phone sensors in a crowdsensing approach to automatically enrich digital maps with different road semantics like tunnels, bumps, bridges, footbridges, crosswalks, road capacity, among others. Our analysis shows that cell-phones sensors with humans in vehicles or walking get affected by the different road features, which can be mined to extend the features of both free and commercial mapping services. We present the design and implementation of Map++ and evaluate it in a large city. Our evaluation shows that we can detect the different semantics accurately with at most 3% false positive rate and 6% false negative rate for both vehicle and pedestrian-based features. Moreover, we show that Map++ has a small energy footprint on the cell-phones, highlighting its promise as a ubiquitous digital maps enriching service.Comment: Published in the Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking (IEEE SECON 2014

    Sensing motion using spectral and spatial analysis of WLAN RSSI

    Get PDF
    In this paper we present how motion sensing can be obtained just by observing the WLAN radio signal strength and its fluctuations. The temporal, spectral and spatial characteristics of WLAN signal are analyzed. Our analysis confirms our claim that ’signal strength from access points appear to jump around more vigorously when the device is moving compared to when it is still and the number of detectable access points vary considerably while the user is on the move’. Using this observation, we present a novel motion detection algorithm, Spectrally Spread Motion Detection (SpecSMD) based on the spectral analysis of WLAN signal’s RSSI. To benchmark the proposed algorithm, we used Spatially Spread Motion Detection (SpatSMD), which is inspired by the recent work of Sohn et al. Both algorithms were evaluated by carrying out extensive measurements in a diverse set of conditions (indoors in different buildings and outdoors - city center, parking lot, university campus etc.,) and tested against the same data sets. The 94% average classification accuracy of the proposed SpecSMD is outperforming the accuracy of SpatSMD (accuracy 87%). The motion detection algorithms presented in this paper provide ubiquitous methods for deriving the state of the user. The algorithms can be implemented and run on a commodity device with WLAN capability without the need of any additional hardware support

    Probabilistic models for mobile phone trajectory estimation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-161).This dissertation is concerned with the problem of determining the track or trajectory of a mobile device - for example, a sequence of road segments on an outdoor map, or a sequence of rooms visited inside a building - in an energy-efficient and accurate manner. GPS, the dominant positioning technology today, has two major limitations. First, it consumes significant power on mobile phones, making it impractical for continuous monitoring. Second, it does not work indoors. This dissertation develops two ways to address these limitations: (a) subsampling GPS to save energy, and (b) using alternatives to GPS such as WiFi localization, cellular localization, and inertial sensing (with the accelerometer and gyroscope) that consume less energy and work indoors. The key challenge is to match a sequence of infrequent (from sub-sampling) and inaccurate (from WiFi, cellular or inertial sensing) position samples to an accurate output trajectory. This dissertation presents three systems, all using probabilistic models, to accomplish this matching. The first, VTrack, uses Hidden Markov Models to match noisy or sparsely sampled geographic (lat, lon) coordinates to a sequence of road segments on a map. We evaluate VTrack on 800 drive hours of GPS and WiFi localization data collected from 25 taxicabs in Boston. We find that VTrack tolerates significant noise and outages in location estimates, and saves energy, while providing accurate enough trajectories for applications like travel-time aware route planning. CTrack improves on VTrack with a Markov Model that uses "soft" information in the form of raw WiFi or cellular signal strengths, rather than geographic coordinates. It also uses movement and turn "hints" from the accelerometer and compass to improve accuracy. We implement CTrack on Android phones, and evaluate it on cellular signal data from over 126 (1,074 miles) hours of driving data. CTrack can retrieve over 75% of a user's drive accurately on average, even from highly inaccurate (175 metres raw position error) GSM data. iTrack uses a particle filter to combine inertial sensing data from the accelerometer and gyroscope with WiFi signals and accurately track a mobile phone indoors. iTrack has been implemented on the iPhone, and can track a user to within less than a metre when walking with the phone in the hand or pants pocket, over 5 x more accurately than existing WiFi localization approaches. iTrack also requires very little manual effort for training, unlike existing localization systems that require a user to visit hundreds or thousands of locations in a building and mark them on a map.by Arvind Thiagarajan.Ph.D
    corecore