5,355 research outputs found

    Unifying Parsimonious Tree Reconciliation

    Full text link
    Evolution is a process that is influenced by various environmental factors, e.g. the interactions between different species, genes, and biogeographical properties. Hence, it is interesting to study the combined evolutionary history of multiple species, their genes, and the environment they live in. A common approach to address this research problem is to describe each individual evolution as a phylogenetic tree and construct a tree reconciliation which is parsimonious with respect to a given event model. Unfortunately, most of the previous approaches are designed only either for host-parasite systems, for gene tree/species tree reconciliation, or biogeography. Hence, a method is desirable, which addresses the general problem of mapping phylogenetic trees and covering all varieties of coevolving systems, including e.g., predator-prey and symbiotic relationships. To overcome this gap, we introduce a generalized cophylogenetic event model considering the combinatorial complete set of local coevolutionary events. We give a dynamic programming based heuristic for solving the maximum parsimony reconciliation problem in time O(n^2), for two phylogenies each with at most n leaves. Furthermore, we present an exact branch-and-bound algorithm which uses the results from the dynamic programming heuristic for discarding partial reconciliations. The approach has been implemented as a Java application which is freely available from http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    On the origin of <i>Halipeurus heraldicus</i> on Round Island petrels: cophylogenetic relationships between petrels and their chewing lice

    Get PDF
    Lice phylogenetic relationships have often been used to elucidate host relationships and vice versa. In this study, we investigate the louse genus Halipeurus which parasitizes bird hosts in the families Procellariidae, Hydrobatidae and Pelecanoididae. The presence of two lice species on Pterodroma arminjoniana in different breeding grounds (Halipeurus heraldicus on Round Island, off Mauritius in the Indian Ocean and Halipeurus kermadecensis on Trindade Island in the Atlantic Ocean) has led to some confusion in the distribution of Pt. arminjoniana and its close relatives Pt. heraldica and Pt. neglecta. By using a cophylogenetic approach that incorporates uncertainties in phylogenetic reconstructions, we show significant overall coevolution between Halipeurus lice and their hosts. However, the study also indicates that the presence of H. heraldicus on Pt. arminjoniana and Pt. neglecta on Round Island and on Pt. heraldica on Gambier Island are the result of a host switch whereas H. kermadecensis is the ancestral parasite of Pt. arminjoniana. This suggests that H. kermadecensis was lost during or after colonisation of Round Island by Pt. arminjoniana. We conclude that cophylogenetic analyses are central to inferring the evolutionary history and biogeographical patterns of hosts and their parasites

    The rationality of vagueness

    Get PDF

    Theism, naturalism, and scientific realism

    Get PDF
    Scientific knowledge is not merely a matter of reconciling theories and laws with data and observations. Science presupposes a number of metatheoretic shaping principles in order to judge good methods and theories from bad. Some of these principles are metaphysical and some are methodological. While many shaping principles have endured since the scientific revolution, others have changed in response to conceptual pressures both from within science and without. Many of them have theistic roots. For example, the notion that nature conforms to mathematical laws flows directly from the early modern presupposition that there is a divine Lawgiver. This interplay between theism and shaping principles is often unappreciated in discussions about the relation between science and religion. Today, of course, naturalists reject the influence of theism and prefer to do science on their terms. But as Robert Koons and Alvin Plantinga have argued, this is more difficult than is typically assumed. In particular, they argue, metaphysical naturalism is in conflict with several metatheoretic shaping principles, especially explanatory virtues such as simplicity and with scientific realism more broadly. These arguments will be discussed as well as possible responses. In the end, theism is able to provide justification for the philosophical foundations of science that naturalism cannot

    Underdetermination and Models in Biology

    Get PDF
    Since the early 20th century underdetermination has been one of the most contentious problems in the philosophy of science. In this article I relate the underdetermination problem to models in biology and defend two main lines of argument: First, the use of models in this discipline lends strong support to the underdetermination thesis. Second, models and theories in biology are not determined strictly by the logic of representation of the studied phenomena, but also by other constraints such as research traditions, backgrounds of the scientists, aims of the research and available technology. Convincing evidence for the existence of underdetermination in biology, where models abound, comes both from the fact that for a natural phenomenon we can create a number of candidate models but also from the fact that we do not have a universal rule that would adjudicate among them. This all makes a strong case for the general validity of underdetermination thesis

    Some considerations concerning the challenge of incorporating social variables into epidemiological models of infectious disease transmission

    Get PDF
    Incorporation of ‘social’ variables into epidemiological models remains a challenge. Too much detail and models cease to be useful; too little and the very notion of infection —a highly social process in human populations—may be considered with little reference to the social. The French sociologist Emile Durkheim proposed that the scientific study of society required identification and study of ‘social currents.’ Such ‘currents’ are what we might today describe as ‘emergent properties,’ specifiable variables appertaining to individuals and groups, which represent the perspectives of social actors as they experience the environment in which they live their lives. Here we review the ways in which one particular emergent property, hope, relevant to a range of epidemiological situations, might be used in epidemiological modelling of infectious diseases in human populations. We also indicate how such an approach might be extended to include a range of other potential emergent properties to repre
    corecore