18,835 research outputs found

    ScALPEL: A Scalable Adaptive Lightweight Performance Evaluation Library for application performance monitoring

    Get PDF
    As supercomputers continue to grow in scale and capabilities, it is becoming increasingly difficult to isolate processor and system level causes of performance degradation. Over the last several years, a significant number of performance analysis and monitoring tools have been built/proposed. However, these tools suffer from several important shortcomings, particularly in distributed environments. In this paper we present ScALPEL, a Scalable Adaptive Lightweight Performance Evaluation Library for application performance monitoring at the functional level. Our approach provides several distinct advantages. First, ScALPEL is portable across a wide variety of architectures, and its ability to selectively monitor functions presents low run-time overhead, enabling its use for large-scale production applications. Second, it is run-time configurable, enabling both dynamic selection of functions to profile as well as events of interest on a per function basis. Third, our approach is transparent in that it requires no source code modifications. Finally, ScALPEL is implemented as a pluggable unit by reusing existing performance monitoring frameworks such as Perfmon and PAPI and extending them to support both sequential and MPI applications.Comment: 10 pages, 4 figures, 2 table

    Contention-aware performance monitoring counter support for real-time MPSoCs

    Get PDF
    Tasks running in MPSoCs experience contention delays when accessing MPSoC’s shared resources, complicating task timing analysis and deriving execution time bounds. Understanding the Actual Contention Delay (ACD) each task suffers due to other corunning tasks, and the particular hardware shared resources in which contention occurs, is of prominent importance to increase confidence on derived execution time bounds of tasks. And, whenever those bounds are violated, ACD provides information on the reasons for overruns. Unfortunately, existing MPSoC designs considered in real-time domains offer limited hardware support to measure tasks’ ACD losing all these potential benefits. In this paper we propose the Contention Cycle Stack (CCS), a mechanism that extends performance monitoring counters to track specific events that allow estimating the ACD that each task suffers from every contending task on every hardware shared resource. We build the CCS using a set of specialized low-overhead Performance Monitoring Counters for the Cobham Gaisler GR740 (NGMP) MPSoC – used in the space domain – for which we show CCS’s benefits.The research leading to these results has received funding from the European Space Agency under contracts 4000109680, 4000110157 and NPI 4000102880, and the Ministry of Science and Technology of Spain under contract TIN-2015-65316-P. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    LIKWID: Lightweight Performance Tools

    Full text link
    Exploiting the performance of today's microprocessors requires intimate knowledge of the microarchitecture as well as an awareness of the ever-growing complexity in thread and cache topology. LIKWID is a set of command line utilities that addresses four key problems: Probing the thread and cache topology of a shared-memory node, enforcing thread-core affinity on a program, measuring performance counter metrics, and microbenchmarking for reliable upper performance bounds. Moreover, it includes a mpirun wrapper allowing for portable thread-core affinity in MPI and hybrid MPI/threaded applications. To demonstrate the capabilities of the tool set we show the influence of thread affinity on performance using the well-known OpenMP STREAM triad benchmark, use hardware counter tools to study the performance of a stencil code, and finally show how to detect bandwidth problems on ccNUMA-based compute nodes.Comment: 12 page

    iTeleScope: Intelligent Video Telemetry and Classification in Real-Time using Software Defined Networking

    Full text link
    Video continues to dominate network traffic, yet operators today have poor visibility into the number, duration, and resolutions of the video streams traversing their domain. Current approaches are inaccurate, expensive, or unscalable, as they rely on statistical sampling, middle-box hardware, or packet inspection software. We present {\em iTelescope}, the first intelligent, inexpensive, and scalable SDN-based solution for identifying and classifying video flows in real-time. Our solution is novel in combining dynamic flow rules with telemetry and machine learning, and is built on commodity OpenFlow switches and open-source software. We develop a fully functional system, train it in the lab using multiple machine learning algorithms, and validate its performance to show over 95\% accuracy in identifying and classifying video streams from many providers including Youtube and Netflix. Lastly, we conduct tests to demonstrate its scalability to tens of thousands of concurrent streams, and deploy it live on a campus network serving several hundred real users. Our system gives unprecedented fine-grained real-time visibility of video streaming performance to operators of enterprise and carrier networks at very low cost.Comment: 12 pages, 16 figure

    KAPow: A System Identification Approach to Online Per-Module Power Estimation in FPGA Designs

    Get PDF
    In a modern FPGA system-on-chip design, it is often insufficient to simply assess the total power consumption of the entire circuit by design-time estimation or runtime power rail measurement. Instead, to make better runtime decisions, it is desirable to understand the power consumed by each individual module in the system. In this work, we combine boardlevel power measurements with register-level activity counting to build an online model that produces a breakdown of power consumption within the design. Online model refinement avoids the need for a time-consuming characterisation stage and also allows the model to track long-term changes to operating conditions. Our flow is named KAPow, a (loose) acronym for ‘K’ounting Activity for Power estimation, which we show to be accurate, with per-module power estimates as close to ±5mW of true measurements, and to have low overheads. We also demonstrate an application example in which a permodule power breakdown can be used to determine an efficient mapping of tasks to modules and reduce system-wide power consumption by over 8%
    • …
    corecore